1,098
Views
29
CrossRef citations to date
0
Altmetric
Review

Recent progress in dielectric nanocomposites

ORCID Icon &
Pages 1-16 | Received 31 Jul 2019, Accepted 28 Sep 2019, Published online: 20 Oct 2019

References

  • Sarjeant W, Clelland IW, Price RA. Capacitive components for power electronics. Proc IEEE. 2001;89(6):846–855.
  • Tan Q, Irwin P, Cao Y. Advanced dielectrics for capacitors. IEEJ Trans Fundam Mat. 2006;126(11):1153–1159.
  • Bell AJ. Ferroelectrics: The role of ceramic science and engineering. J Eur Ceram Soc. 2008;28(7):1307–1317.
  • Ogihara H, Randall CA, Trolier-McKinstry S. High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics. J Am Ceram Soc. 2009;92(8):1719–1724.
  • Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media; 2013.
  • Barber P, Balasubramanian S, Anguchamy Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials (Basel). 2009;2(4):1697–1733.
  • Li Q, Yao F-Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res. 2018;48:219–243.
  • Love GR. Energy storage in ceramic dielectrics. J Am Ceram Soc. 1990;73(2):323–328.
  • Burn I, Smyth D. Energy storage in ceramic dielectrics. J Mater Sci. 1972;7(3):339–343.
  • Johnson RW, Evans JL, Jacobsen P, et al. The changing automotive environment: high-temperature electronics. IEEE Trans Electron Packag Manuf. 2004;27(3):164–176.
  • Watson J, Castro G. High-temperature electronics pose design and reliability challenges. Analog Dialogue. 2012;46(2):3–9.
  • Li Q, Chen L, Gadinski MR, et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature. 2015;523(7562):576–579.
  • Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielectr. 2013;03(01):1330001.
  • Bai Y, Cheng Z-Y, Bharti V, et al. High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett. 2000;76(25):3804–3806.
  • Wang Q, Zhu L. Polymer nanocomposites for electrical energy storage. J Polym Sci, Part B: Polym Phys. 2011;49(20):1421–1429.
  • Sugimoto W, Yokoshima K, Ohuchi K, et al. Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors. J Electrochem Soc. 2006;153(2):A255–A260.
  • Nam KT, Kim D-W, Yoo PJ, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312(5775):885–888.
  • Pasha SK, Deshmukh K, Ahamed MB, et al. Investigation of microstructure, morphology, mechanical, and dielectric properties of PVA/PbO nanocomposites. Adv Polym Technol. 2017;36(3):352–361.
  • Deshmukh K, Ahamed MB, Deshmukh R, et al. Biopolymer composites with high dielectric performance: interface engineering. Biopolymer Compos Electron. 2017: 27–128.
  • Deshmukh K, Ahamed MB, Deshmukh RR, et al. Eeonomer 200F®: A high-performance nanofiller for polymer reinforcement – investigation of the structure, morphology and dielectric properties of polyvinyl alcohol/eeonomer-200F® nanocomposites for embedded capacitor applications. J Electron Mater. 2017;46(4):2406–2418.
  • Deng Y, Zhang Y, Xiang Y, et al. Bi2S3–BaTiO3/PVDF three-phase composites with high dielectric permittivity. J Mater Chem. 2009;19(14):2058–2061.
  • Dang ZM, Wang HY, Zhang YH, et al. Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3. Macromol Rapid Commun. 2005;26(14):1185–1189.
  • Liang X, Yu S, Sun R, et al. Microstructure and dielectric behavior of the three-phase Ag@ SiO2/BaTiO3/PVDF composites with high permittivity. J Mater Res. 2012;27(7):991–998.
  • Jang Y, Lee WH, Park YD, et al. High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators. Appl Phys Lett. 2009;94(18):125.
  • Chanmal C, Jog J. Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett. 2008;2(4):294–301.
  • Ogitani S, Bidstrup-Allen SA, Kohl PA. Factors influencing the permittivity of polymer/ceramic composites for embedded capacitors. IEEE Trans Adv Packag. 2000;23(2):313–322.
  • Olszowy M, Pawlaczyk C, Markiewicz E, et al. Dielectric and pyroelectric properties of BaTiO3–PVC composites. Phys Status Solidi A. 2005;202(9):1848–1853.
  • Singha S, Thomas MJ. Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul. 2008;15(1):12–23.
  • Fuse N, Kozako M, Tanaka T, et al. Effects of mica fillers on dielectric properties of polyamide nanocomposites. CEIDP’05. 2005 annual report conference on electrical insulation and dielectric phenomena, 2005. IEEE; 2005. p. 148–151.
  • Yang Y, Zhu B-P, Lu Z-H, et al. Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl Phys Lett. 2013;102(4):042904.
  • Janezic MD, Jargon JA. Complex permittivity determination from propagation constant measurements. IEEE Microw Guid Wave Lett. 1999;9(2):76–78.
  • Riddle B, Baker-Jarvis J, Krupka J. Complex permittivity measurements of common plastics over variable temperatures. IEEE Trans Microw Theory Tech. 2003;51(3):727–733.
  • Reddy PL, Deshmukh K, Chidambaram K, et al. Dielectric properties of polyvinyl alcohol (PVA) nanocomposites filled with green synthesized zinc sulphide (ZnS) nanoparticles. J Mater Sci: Mater Electron. 2019;30(5):4676–4687.
  • Muzaffar A, Ahamed MB, Deshmukh K, et al. Electromagnetic interference shielding properties of polyvinylchloride (PVC), barium titanate (BaTiO3) and nickel oxide (NiO) based nanocomposites. Polym Test. 2019;77:105925.
  • Muzaffar A, Ahamed MB, Deshmukh K, et al. Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidenefluoride nanocomposites. Mater Lett. 2018;218:217–220.
  • Huang L, Jia Z, Kymissis I, et al. High K capacitors and OFET gate dielectrics from self-assembled BaTiO3 and (Ba,Sr)TiO3 nanocrystals in the superparaelectric limit. Adv Funct Mater. 2010;20(4):554–560.
  • Deshmukh K, Ahamed MB, Deshmukh RR, et al. Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci: Mater Electron. 2017;28(1):559–575.
  • Yu K, Niu Y, Zhou Y, et al. Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J Am Ceram Soc. 2013;96(8):2519–2524.
  • Lim S, Lee KH, Kim H, et al. Optimization of nanocomposite gate insulators for organic thin film transistors. Org Electron. 2015;17:144–150.
  • Wang L, Gao F, Xu J, et al. Fabrication, characterisation and dielectric properties of KH550 modified BST/PVDF nanocomposites with high dielectric strength. High Voltage. 2016;1(4):158–165.
  • Song Y, Shen Y, Liu H, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem. 2012;22(32):16491–16498.
  • Osinska K, Czekaj D. Thermal behavior of BST//PVDF ceramic–polymer composites. J Therm Anal Calorim. 2013;113:69–76.
  • Kułek J, Szafraniak I, Hilczer B, et al. Dielectric and pyroelectric response of PVDF loaded with BaTiO3 obtained by mechanosynthesis. J Non Cryst Solids. 2007;353(47–51):4448–4452.
  • Liu S, Zhai J. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A. 2015;3(4):1511–1517.
  • Shen Z-H, Wang J-J, Zhang X, et al. Space charge effects on the dielectric response of polymer nanocomposites. Appl Phys Lett. 2017;111(9):092901.
  • Park JM, Lee HY, Kim J-J, et al. Dielectric properties of Ni-coated BaTiO3-PMMA composite. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(5):1038–1042.
  • Kumar HP, Vijayakumar C, George CN, et al. Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J Alloys Compd. 2008;458(1–2):528–531.
  • Deshmukh K, Ahamed MB, Sadasivuni KK, et al. Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res. 2016;23(8):159.
  • Sankaran S, Deshmukh K, Ahamed MB, et al. Electrical and electromagnetic interference (EMI) shielding properties of hexagonal boron nitride nanoparticles reinforced polyvinylidene fluoride nanocomposite films. Polym Plast Technol Mater. 2019;58(11):1191–1209.
  • Deshmukh K, Ahamed MB, Sadasivuni KK, et al. Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res. 2017;24(2):27.
  • Lu X, Zhang L, Tong Y, et al. BST-P (VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Composites Part B. 2019;168:34–43.
  • Itasaka H, Mimura K-I, Kato K. Extra surfactant-assisted self-assembly of highly ordered monolayers of BaTiO3 nanocubes at the air–water interface. Nanomaterials. 2018;8(9):739.
  • Feng Y, Li W, Hou Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C. 2015;3(6):1250–1260.
  • Urban JJ, Yun WS, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J Am Chem Soc. 2002;124(7):1186–1187.
  • Zhou T, Zha J-W, Cui R-Y, et al. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces. 2011;3(7):2184–2188.
  • Deshmukh K, Ahamed MB, Deshmukh RR, et al. Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur Polym J. 2016;76:14–27.
  • Deshmukh K, Ahamed MB, Sadasivuni KK, et al. Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys. 2017;186:188–201.
  • Mohanapriya M, Deshmukh K, Ahamed MB, et al. Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today: Proc. 2016;3(6):1864–1873.
  • Mohanapriya M, Deshmukh K, Chidambaram K, et al. Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device applications. J Mater Sci: Mater Electron. 2017;28(8):6099–6111.
  • Deshmukh K, Ahamed MB, Sadasivuni KK, et al. Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 2017;134(5).
  • Thangamani GJ, Deshmukh K, Chidambaram K, et al. Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J Mater Sci: Mater Electron. 2018;29(6):5186–5205.
  • Sahu N, Parija B, Panigrahi S. Fundamental understanding and modeling of spin coating process: a review. Indian J Phys. 2009;83(4):493–502.
  • Omar O, Ray A, Hassan A, et al. Resorcinol calixarenes (resorcarenes): Langmuir-Blodgett films and optical properties. Supramol Sci. 1997;4(3–4):417–421.
  • Flack WW, Soong DS, Bell AT, et al. A mathematical model for spin coating of polymer resists. J Appl Phys. 1984;56(4):1199–1206.
  • Cohen ED, Gutoff EB. Modern coating and drying technology. University of Texas Press; 1992.
  • Bornside D, Macosko C, Scriven L. Modeling of spin coating. J Imaging Technol. 1987;13(4):122–130.
  • Søndergaard R, Hösel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Mater Today. 2012;15(1–2):36–49.
  • Søndergaard RR, Hösel M, Krebs FC. Roll-to-roll fabrication of large area functional organic materials. J Polym Sci, Part B: Polym Phys. 2013;51(1):16–34.
  • Krebs FC. Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol Energy Mater Sol Cells. 2009;93(9):1636–1641.
  • Bundgaard E, Hagemann O, Manceau M, et al. Low band gap polymers for roll-to-roll coated polymer solar cells. Macromolecules. 2010;43(19):8115–8120.
  • Zimmermann B, Schleiermacher H-F, Niggemann M, et al. ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating. Sol Energy Mater Sol Cells. 2011;95(7):1587–1589.
  • Hong S, Lee J, Kang H, et al. Slot-die coating parameters of the low-viscosity bulk-heterojunction materials used for polymer solarcells. Sol Energy Mater Sol Cells. 2013;112:27–35.
  • Liu F, Ferdous S, Schaible E, et al. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv Mater. 2015;27(5):886–891.
  • Ciro J, Mejía-Escobar MA, Jaramillo F. Slot-die processing of flexible perovskite solar cells in ambient conditions. Sol Energy. 2017;150:570–576.
  • Carvalho MS, Kheshgi HS. Low-flow limit in slot coating: theory and experiments. AIChE J. 2000;46(10):1907–1917.
  • Nam J, Carvalho MS. Flow in tensioned-web-over-slot die coating: effect of die lip design. Chem Eng Sci. 2010;65(13):3957–3971.
  • Chu W-B, Yang J-W, Wang Y-C, et al. The effect of inorganic particles on slot die coating of poly (vinyl alcohol) solutions. J Colloid Interface Sci. 2006;297(1):215–225.
  • Machui F, Lucera L, Spyropoulos GD, et al. Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations. Sol Energy Mater Sol Cells. 2014;128:441–446.
  • Krebs FC. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells. 2009;93(4):394–412.
  • Meinhart CD, Zhang H. The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst. 2000;9(1):67–75.
  • Ko SH, Chung J, Hotz N, et al. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J Micromech Microeng. 2010;20(12):125010.
  • Matoba H, Inui T, Hirata S, et al. Ink jet head with buckling structure body. Google patents US5684519A. 1997.
  • Abe S, Inui T, Matoba H, et al. Ink jet head compact and allowing ink to be discharged with great force by using deformable structure. Google patents US5825383A. 1998.
  • Taub HH, Denler GD. Barrier structure for thermal ink-jet printheads. Google patents EP0294032B1. 1988.
  • Silverbrook K. Ink jet print device and print head or print apparatus using the same. Google patents. 2000.
  • Newman J, Turner A, Marrazza G. Ink-jet printing for the fabrication of amperometric glucose biosensors. Anal Chim Acta. 1992;262(1):13–17.
  • Hayes DJ, Cox WR, Grove ME. Low-cost display assembly and interconnect using ink-jet printing technology. J Soc Inf Disp. 2001;9(1):9–13.
  • Italiano VJ, Sayko SP. Multiple nozzle ink jet print head. Google patents US4415909A. 1983.
  • Penwell RC. Hybrid thermal/hot melt ink jet print head. Google patents US5539437A. 1996.
  • Fuller SB, Wilhelm EJ, Jacobson JM. Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst. 2002;11(1):54–60.
  • Bassous E, Kuhn L, Taub HH. Jet nozzle structure for electrohydrodynamic droplet formation and ink jet printing system therewith. Google patents US3949410A. 1976.
  • Burkitt D, Searle J, Watson T. Perovskite solar cells in NIP structure with four slot-die-coated layers. R Soc Open Sci. 2018;5(5):172158.
  • Yersin H. Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties. Transition metal and rare earth compounds. Springer; 2004. p. 1–26.
  • Wang S-C, Peng D-Z. OLED display, information device, and method for displaying an image in OLED display. Google patents US8405585B2. 2013.
  • Cok RS, Arnold AD, Winters D. OLED display with auxiliary electrode. Google patents US20040178722A1. 2004.
  • Cok RS. OLED display and touch screen. Google patents JP2004227576A. 2006.
  • Cok RS, Hamer JW. Flexible oled display with chiplets. Google patents US20100213819A1. 2010.
  • Sugimoto A, Ochi H, Fujimura S, et al. Flexible OLED displays using plastic substrates. IEEE J Sel Top Quantum Electron. 2004;10(1):107–114.
  • Wong WS, Salleo A. Flexible electronics: materials and applications. Springer Science & Business Media; 2009.
  • Smith JT, O’Brien B, Lee Y-K, et al. Application of flexible OLED display technology for electro-optical stimulation and/or silencing of neural activity. J Disp Technol. 2014;10(6):514–520.
  • Tsujimura T. OLED display fundamentals and applications. John Wiley; 2017.
  • Miao Y-k, Chen J. OLED panel display technology. Commun Technol. 2008;4.
  • Dobbertin T, Becker E, Benstem T, et al. OLED matrix displays: in-line process technology and fundamentals. Thin Solid Films. 2003;442(1–2):132–139.
  • Urabe T, Sasaoka T, Tatsuki K, et al. 13.1: Invited paper: technological evolution for large screen size active matrix OLED display. SID Symp Dig Tech Pap. 2007;38:161–164.
  • Prache O. Active matrix molecular OLED microdisplays. Displays. 2001;22(2):49–56.
  • Kunić S, Šego Z. OLED technology and displays. Proceedings ELMAR-2012. 2012:31–35.
  • Chu C, Ha J, Choi J, et al. 25.4: advances and issues in white OLED and color filter architecture. SID Symp Dig Tech Pap. 2007;38(1):1118–1121.
  • Adhikari B, Majumdar S. Polymers in sensor applications. Prog Polym Sci. 2004;29(7):699–766.
  • Akyildiz IF, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks. IEEE Commun Mag. 2002;40(8):102–114.
  • Chong C-Y, Kumar SP. Sensor networks: evolution, opportunities, and challenges. Proc IEEE. 2003;91(8):1247–1256.
  • Ko WH, Wang Q. Touch mode capacitive pressure sensors. Sens Actuators, A. 1999;75(3):242–251.
  • Du L, Kwon G, Arai F, et al. Structure design of micro touch sensor array. Sens Actuators, A. 2003;107(1):7–13.
  • Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem. 2000;1(1):18–52.
  • Available from: https://infionex.in/product/single-touch-sensor/.
  • Available from: https://www.eizoglobal.com/library/basics/basic_understanding_of_touch_panel/
  • Suchanek WL, Riman RE. Hydrothermal synthesis of advanced ceramic powders, advances in science and technology. Adv Sci Technol. 2006;45:184–193.
  • Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater. 2007;53(2):117–166.
  • Byrappa K, Yoshimura M. Handbook of hydrothermal technology. William Andrew; 2012.
  • Somiya A, Hishinuma K, Akiba T. A new materials processing – hydrothermal processing. Bull Mater Sci. 1995;18:811–818.
  • Byrappa K. Hydrothermal growth of crystals. In: Byrappa K, Ohachi T, Klapper H, Fornari R, editors. Crystal growth of technologically important electronic materials. New Delhi: Allied; 2003. p. 271–284.
  • Komarneni S, Pidugu R, Li QH, et al. Microwave-hydrothermal processing of metal powders. J Mater Res. 1995;10(7):1687–1692.
  • Serp J, Allibert M, Beneš O, et al. The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog Nucl Energy. 2014;77:308–319.
  • Papageorgiou N, Athanassov Y, Armand M, et al. The performance and stability of ambient temperature molten salts for solar cell applications. J Electrochem Soc. 1996;143(10):3099–3108.
  • Liu X, Fechler N, Antonietti M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev. 2013;42(21):8237–8265.
  • Liu S, Xiu S, Shen B, et al. Dielectric properties and energy storage densities of poly(vinylidenefluoride) nanocomposite with surface hydroxylated cube shaped Ba0.6Sr0.4TiO3 nanoparticles. Polymers (Basel). 2016;8(2):45.
  • Dislich H. Sol-gel: science, processes and products. J Non Cryst Solids. 1986;80(1–3):115–121.
  • Wright JD, Sommerdijk NA. Sol-gel materials: chemistry and applications. CRC press; 2018.
  • Tillotson T, Gash A, Simpson R, et al. Nanostructured energetic materials using sol–gel methodologies. J Non Cryst Solids. 2001;285(1–3):338–345.
  • Mackenzie JD. Applications of the sol-gel process. J Non Cryst Solids. 1988;100(1–3):162–168.
  • Kamalasanan M, Deepak Kumar N, Chandra S. Structural, optical, and dielectric properties of sol-gel derived SrTiO3 thin films. J Appl Phys. 1993;74(1):679–686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.