639
Views
6
CrossRef citations to date
0
Altmetric
Review

The state-of-art of microstructural evolution of bearing materials under Rolling Contact Fatigue

, &
Pages 131-149 | Received 18 Aug 2019, Accepted 08 Oct 2019, Published online: 23 Oct 2019

References

  • Weibull W. A statistical theory of the strength of materials. P Am Math Soc. 1939;151:1034.
  • Lundberg G, Palmgren A. Dynamic capacity of rolling bearings. Acta Polytech Mech Eng Ser. Royal Swedish Acad Eng Sci. 1947;1:1–52.
  • Sadeghi F, Jalalahmadi B, Slack TS, et al. A review of rolling contact fatigue. J Tribol. 2009;131:41401–41403.
  • Arakere NK. Gigacycle rolling contact fatigue of bearing steels: a review. Int J Fatigue. 2016;93:238–249.
  • Zaretsky EV. STLE life factors for rolling bearings. Park Ridge: Stle Sp−34; 1992.
  • Parker RJ, Zaretsky EV. Reevaluation of the stress-life relation in rolling element bearings. Washington: NASA; 1972.
  • Schlicht H, Schreiber E, Zwirlein O. Fatigue and failure mechanism of bearings. IMechE London. 1986;C285(86):85–90.
  • Tallian TE. Simplified contact fatigue life prediction model-Part I: review of published models. J Tribol. 1992;114:207–213.
  • Tallian TE. Simplified contact fatigue life prediction model-Part II: new model. J Tribol. 1992;114:214–220.
  • Kudish II, Burris KW. Modern state of experimentation and modeling in contact fatigue phenomenon: Part II – analysis of the existing statistical mathematical models of bearing and gear fatigue life. New statistical model of contact fatigue. Tribol T. 2000;43:293–301.
  • Shao E, Huang X, Wang C, et al. A method of detecting rolling contact crack initiation and the establishment of crack propagation curves. Tribol T. 1988;31:6–11.
  • Leng X, Chen Q, Shao E. Initiation and propagation of case crushing cracks in rolling contact fatigue. Wear. 1988;122:33–43.
  • Otsuka A, Sugawara H, Shomura M. A test method for mode II fatigue crack growth relating to a model for rolling contact fatigue. Fatigue Fract Eng Mater Struct. 1996;19:1265–1275.
  • Miyashita Y, Yoshimura Y, Xu J, et al. Subsurface crack propagation in rolling contact fatigue of sintered alloy. JSME International Journal Series A. 2003;46:341–347.
  • Harris TA, Barnsby RM. Life ratings for ball and roller bearings. Proc Inst Mech Eng. Part J: J Eng Tribol. 2001;215:577–595.
  • Barnsby R, Duchowski J, Harris T, et al. Life ratings for modern rolling bearings. New York: ASME International Co-published with STLE; 2003.
  • International Organization for Standardization. Rolling bearings-dynamic load ratings and rating life. In ISO 281:2007. 2nd ed. Switzerland: International Organization for Standardization; 2007.
  • Grabulov A, Petrov R, Zandbergen HW. EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under rolling contact fatigue (RCF). Int J Fatigue. 2010;32:576–583.
  • Smelova V, Schwedt A, Wang L, et al. Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF). Int J Fatigue. 2017;100:148–158.
  • Voskamp AP, Mittemeijer EJ. Crystallographic preferred orientation induced by cyclic rolling contact loading. Metall Mater Trans A. 1996;27:3445–3465.
  • Smelova V, Schwedt A, Wang L, et al. Electron microscopy investigations of microstructural alterations due to classical rolling contact fatigue (RCF) in martensitic AISI 52100 bearing steel. Int J Fatigue. 2017;98:142–154.
  • Becker PC. Microstructural changes around non-metallic inclusions caused by rolling-contact fatigue of ball-bearing steels. Metals Technol. 1981;8:234–243.
  • Grabulov A. Fundamentals of rolling contact fatigue [PhD thesis]. Serbia: University of Belgrade; 2010.
  • Evans MH. White structure flaking failure in bearings under rolling contact fatigue [PhD thesis]. Southampton: University of Southampton; 2013.
  • Evans MH. An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater Sci Tech-Lond. 2016;32:1133–1169.
  • Voskamp AP. Material response to rolling contact loading. J Tribol. 1985;107:359–364.
  • Voskamp AP. Microstructural changes during rolling contact fatigue [PhD thesis]. Delft: Delft University of Technology; 1997.
  • Timoshenko S, Goodier JN. Theory of elasticity. New York: McGraw-Hill book; 1951.
  • Popov VL. Contact mechanics and friction physical principles and applications. Berlin: Springer; 2010.
  • Johnson KL. Contact mechanics. London: Press Syndicate of the University of Cambridge; 1985.
  • Hills DA, Nowell D, Sackfield A. Mechanics of elastic contacts. Oxford: Butterworth-Heinemann; 1993.
  • Harris TA, Kotzalas MN. Rolling bearing analysis: essential concept of bearing technology (fifth edition). New York: Taylor & Francis Group, LLC; 2006.
  • Fu H, Song W, Galindo-Nava EI, et al. Strain-induced martensite decay in bearing steels under rolling contact fatigue: modelling and atomic-scale characterisation. Acta Mater. 2017;139:163–173.
  • Gould B, Paladugu M, Demas NG, et al. Figure the impact of steel microstructure and heat treatment on the formation of white etching cracks. Tribol Int. 2019;134:232–239.
  • Singh H, Pulikollu RV, Hawkins W, et al. Investigation of microstructural alterations in low-and high-speed intermediate-stage wind turbine gearbox bearings. Tribol Lett. 2017;65:81.
  • Zheng XM, Du SM, Zhang YZ, et al. Calculation of stress field in rolling-slip contact of rolling bearings based on matlab. Lubr Eng. 2020;45, accepted.
  • Grabulov A, Zieseb U, Zandbergen HW. TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scripta Mater. 2007;57:635–638.
  • Tricot R, Monnot J, Lluansi M. How microstructural alterations affect fatigue properties of 52100 steel. Met Eng Q. 1972;12:39–47.
  • Moghaddam SM, Sadeghi F. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue. Tribol T. 2016;59:1142–1156.
  • Evans MH. White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs). Mater Sci Tech-Lond. 2012;28:3–22.
  • Friedel J. Dislocations. London: Pergamon Press; 1964; p. 299.
  • Vegter E, Krock H, Kadin Y, et al. Nonmetallic inclusion bonding in bearing steel and the initiation of white-etching cracks. In: Beswick J, editor. Bearing steel technologies: 11th volume, advances in steel technologies for rolling bearings. West Conshohocken: PA: ASTM International; 2017. p. 519–532.
  • Evans MH, Walker JC, Ma C, et al. A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steel. Mater Sci Eng. 2013;570:127–134.
  • Rydel JJ, Toda-Caraballo I, Guetard G, et al. Understanding the factors controlling rolling contact fatigue damage in VIM-VAR M50 steel. Int J Fatigue. 2018;108:68–78.
  • Guetard G, Toda-Caraballo I, Rivera-Díaz-del-Castillo PEJ. Damage evolution around primary carbides under rolling contact fatigue in VIM–VAR M50. Int J Fatigue. 2016;91:59–67.
  • Su YS, Yu SR, Li SX, et al. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue. Front Mech Eng. 2017;12(1):1–8.
  • Errichello R, Budny R, Eckert R. Investigations of bearing failures associated with white etching areas (WEAs) in wind turbine gearboxes. Tribol T. 2013;56:1069–1076.
  • Gegner J. Tribological aspects of rolling bearing failures. Rijeka: InTech; 2011.
  • Evans MH, Wang L, Jones H, et al. White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modelling. Tribol Int. 2013;65:146–160.
  • Kruhöffer W, Loos J. WEC formation in rolling bearings under mixed friction: influences and ‘friction energy accumulation’ as indicator. Tribol T. 2017;60:516–529.
  • Blass T, Dinkel M, Trojahn W. Bearing performance as a function of structure and heat treatment. Mater Sci Tech-Lond. 2016;32:1079–1085.
  • Holweger W, Wolf M, Merk D, et al. White etching crack root cause investigations. Tribol T. 2015;58:59–69.
  • Stadler K, Lai J, Vegter RH. A review: the dilemma with premature white etching crack (WEC) bearing failures. J. Astm Int. 2015;STP1580:487–508.
  • Ruellan A, Kleber X, Ville F, et al. Understanding white etching cracks in rolling element bearings: formation mechanisms and influent tribochemical drivers. Proc Inst Mech Eng Part J J Eng Tribol. 2015;229:886–901.
  • Carroll RI, Beynon JH. Rolling contact fatigue of white etching layer: Part 1. Wear. 2007;262:1253–1266.
  • Harada H, Mikami T, Shibata M, et al. Microstructural changes and crack initiation with white etching area formation under rolling/sliding contact in bearing steel. Isij Int. 2005;45:1897–1902.
  • Uyama H. The mechanism of white structure flaking in rolling bearings; November 15–17; Broomfield, CO, USA. NREL wind turbine tribology seminar, Renaissance Boulder, Flatiron Hotel; 2011. National Renewable Energy Laboratory (NREL), 2011.
  • Ooi SW, Gola A, Vegter RH, et al. Evolution of white-etching cracks and associated microstructural alterations during bearing tests. Mater Sci Tech-Lond. 2017;33:1657–1666.
  • Greco A, Sheng S, Kelle J, et al. Material wear and fatigue in wind turbine systems. Wear. 2013;302:1583–1591.
  • Solano-Alvareza W, Bhadeshia HKDH. White-etching matter in bearing steel Part 2: distinguishing cause and effect in bearing steel failure. Metall Mater Trans A. 2014;45:4916–4931.
  • Solano-Alvarez W, Duff J, Smith MC, et al. Elucidating white-etching matter through highstrain rate tensile testing. Mater Sci Tech-Lond. 2017;33:307–310.
  • Solano-Alvarez W, Pickering EJ, Peet MJ, et al. Soft novel form of white-etching matter and ductile failure of carbide-free bainitic steels under rolling contact stresses. Acta Mater. 2016;121:215–226.
  • Lai J, Stadler K. Investigation on the mechanisms of white etching crack (WEC) formation in rolling contact fatigue and identification of a root cause for bearing premature failure. Wear. 2016;364–365:244–256.
  • Diederichs AM, Barteldes S, Schwedt A, et al. Study of subsurface initiation mechanism for white etching crack formation. Mater Sci Tech-Lond. 2016;32:1170–1178.
  • Paladugu M, Lucas DR, Hyde RS. Effect of lubricants on bearing damage in rolling-sliding conditions: evolution of white etching cracks. Wear. 2018;398-399:165–177.
  • Gould B, Greco A, Stadler K, et al. An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography. Mater Design. 2017;117:417–429.
  • Stadler K, Vegter RH, Vaes D. White etching cracks – a consequence, not a root cause of bearing failure. Evolution Online-Business and Technology Magazine From SKF. 2018(1):21–29.
  • Solano-Alvarez W, Bhadeshia HKDH. White-etching matter in bearing steel. Part I: controlled cracking of 52100 steel. Metall Mater Transs A. 2014;45:4907–4915.
  • Paladugu M, Hyde RS. Microstructure deformation and white etching matter formation along cracks. Wear. 2017;390–391:367–375.
  • Manieri F, Stadler K, Morales-Espejel GE, et al. The origins of white etching cracks and their significance to rolling bearing failures. Int J Fatigue. 2019;120:107–133.
  • Bruce T, Rounding E, Long H, et al. Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear. 2015;338–339:164–177.
  • Paladugu M, Lucas DR, Hyde RS. Influence of raceway surface finish on white etching crack generation in WEC critical oil under rolling-sliding conditions. Wear. 2019;422–423:81–93.
  • Richardson AD, Evans MH, Wang L, et al. The evolution of white etching cracks (WECs) in rolling contact fatigue-tested 100Cr6 steel. Tribol Lett. 2018;66:6.
  • Evans MH, Richardson AD, Wang L, et al. Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribol Int. 2014;75:87–97.
  • Richardson AD, Evans MH, Wang L, et al. The effect of over-based calcium sulfonate detergent additives on white etching crack (WEC) formation in rolling contact fatigue tested 100Cr6 steel. Tribol Int. 2019;133:246–262.
  • Gould B, Demas NG, Pollard G, et al. The effect of lubricant composition on white etching crack failures. Tribol Lett. 2019;67(1):7.
  • Gould B, Greco A. Investigating the process of white etching crack initiation in bearing steel. Tribol Lett. 2016;62:26.
  • Gould B, Greco A. The influence of sliding and contact severity on the generation of white etching cracks. Tribol Letters. 2015;60(2):29.
  • Li SX, Su YS, Shu XD, et al. Microstructural evolution in bearing steel under rolling contact fatigue. Wear. 2017;380–381:146–153.
  • Su YS, Li SX, Lu SY, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue. Int J Fatigue. 2017;105:160–168.
  • Kadin Y, Sherif MY. Energy dissipation at rubbing crack faces in rolling contact fatigue as the mechanism of white etching area formation. Int J Fatigue. 2017;96:114–126.
  • Ščepanskis M, Gould B, Greco A. Empirical investigation of electricity self-generation in a lubricated sliding–rolling contact. Tribol Lett. 2017;65:109.
  • Danielsen HK, Guzmán FG, Dahl KV, et al. Multiscale characterization of white etching cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear. 2017;370-371:73–82.
  • Gould B, Greco A. The influence of sliding and contact severity on the generation of white etching cracks. Tribol Lett. 2015;60:29.
  • Sommer K, Heinz R, Schöfer J, et al. Wälzverschleiß In: Verschleiß metallischer Werkstoffe-Erscheinungsformen sicher beurteilen. 2nd ed. Wiesbaden: Springer Vieweg; 2014. p. 185–369.
  • Evans MH, Richardson AD, Wang L, et al. Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear. 2013;306:226–241.
  • Ruellan A, Ville F, Kleber X, et al. Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms. Proc Inst Mech Eng. Part J: J Eng Tribol. 2014;228:1252–1265.
  • Evans MH, Richardson AD, Wang L, et al. Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings. Wear. 2013;302:1573–1582.
  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sci. 2012;57:268–435.
  • Moghaddam SM, Sadeghi F, Weinzapfel N, et al. A damage mechanics approach to simulate butterfly wing formation around nonmetallic inclusions. J Tribol. 2014;137:11404.
  • Sims CE, Dahle FB. Effect of aluminium on the properties of medium carbon cast steel. AFS Trans. 1938;46:65.
  • Hihara LH, Adler RP, Latanision RM. Environmental degradation of advanced and traditional engineering materials. Boca Raton (FL): CRC Press; 2013.
  • Kang J, Vegter RH, Rivera-Díaz-del-Castillo PEJ. Rolling contact fatigue in martensitic 100Cr6: subsurface hardening and crack formation. Mater Sci Eng A. 2014;607:328–333.
  • Wang DD. Experimental assessment of the influence of DLC on contact fatigue capability of high-temperature bearing steel [Master thesis]. Harbin: Harbin Institute of Technology; 2018.
  • Zheng XM, Zhang YZ, Du SM, et al. A review on design and research progress of antifriction and wear-resistant multilayer coatings. Materials Reports. 2019;33(2):444–453.
  • Muro H, Tsushima N. Microstructural, microhardness and residual stress changes due to rolling contact. Wear. 1970;15:309–330.
  • Osterlund R, Vingsbo O. Phase changes in fatigued ball bearings. Metall Trans a-Phys Metallurgy Mater Sci. 1980;11:701–707.
  • Swahn H, Becker PC, Vingsbo O. Martensite decay during rolling contact fatigue in ball bearings. Metall Trans A. 1976;7:1099–1110.
  • Bush JJ, Grube WL, Robinson GH. Microstructural and residual stress changes in hardened steel due to rolling contact. Transactions of the ASM. 1961;54:390–412.
  • Lund T. Structural alterations in fatigue-tested ball-bearing steel. Jernkontorets Annaler. 1969;153:337–343.
  • Zwirlein O, Schlicht H. Rolling contact fatigue mechanisms accelerated testing versus field performance. Rolling Contact Fatigue Test. Bear Steels. 1982;771:358–379.
  • Swahn H, Becker PC, Vingsbo O. Electron-microscope studies of carbide decay during contact fatigue in ball bearings. Met Sci. 1976;10:35–39.
  • Voskamp AP, Osterlund R, Becker PC, et al. Gradual changes in residual stress and microstructure during contact fatigue in ball bearings. Metals Technol. 1980;7(1):14–21.
  • Kang J, Hosseinkhani B, Vegter RH, et al. Modelling dislocation assisted tempering during rolling contact fatigue in bearing steels. Int J Fatigue. 2015;75:115–125.
  • Maharjan N, Zhou W, Zhou Y. Microstructural study of bearing material failure due to rolling contact fatigue in wind turbine gearbox. 6th International Symposium on current research in hydraulic Turbines; Kathmandu University, Dhulikhel, Nepal. 2016.
  • Voskamp A. Microstructural changes during RCF [PhD thesis]. TU Delft; 1966.
  • Fu H, Galindo-Nava EI, Rivera-Díaz-del-Castillo PEJ. Modelling and characterisation of stress-induced carbide precipitation in bearing steels under rolling contact fatigue. Acta Mater. 2017;128:176–187.
  • Kang JH, Hosseinkhani B, Rivera-Díaz-del-Castillo PEJ. Rolling contact fatigue in bearings: multiscale overview. Mater Sci Technol. 2012;28:44–49.
  • Fu H. Microstructural alterations in bearing steels under rolling contact fatigue [PhD thesis]. Cambridge: University of Cambridge; 2017.
  • Mitamura N, Hidaka H, Takaki S. Microstructural development in bearing steel during rolling contact fatigue. Mater Sci Forum. 2007;539-543:4255–4260.
  • Polonsky IA, Keer LM. On white etching band formation in rolling bearings. J Mech Phys Solids. 1995;43:637–669.
  • Kang JH. Mechanisms of microstructural damage during rolling contact fatigue of bearing steels. Cambridge: University of Cambridge; 2013.
  • Fu H, Rivera-Díaz-del-Castillo PEJ. A unified theory for microstructural alterations in bearing steels under rolling contact fatigue. Acta Mater. 2018;155:43–55.
  • Fu H, Rivera-Díaz-del-Castillo PEJ. Evolution of white etching bands in 100Cr6 bearing steel under rolling contact-fatigue. Metals-Basel. 2019;9:491.
  • Martin JA, Borgese SF, Eberhardt AD. Microstructural alterations of rolling bearing steels undergoing cyclic stressing. J. Basic Eng. 1966;88:555–567.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.