226
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure evolution of ferrite during intercritical deformation in low carbon microalloyed steels

ORCID Icon, , , &
Pages 150-159 | Received 04 May 2019, Accepted 20 Oct 2019, Published online: 06 Nov 2019

References

  • Thompson M, Ferry M, Manohar RA. Simulation of hot-band microstructure of C–Mn steels during high speed cooling. ISIJ Int. 2001;41:891–899. doi: 10.2355/isijinternational.41.891
  • Li CN, Yuan G, Ji FQ, et al. Mechanism of microstructural control and mechanical properties in hot rolled plain C-Mn steel during controlled cooling. ISIJ Int. 2015;55:1721–1729. doi: 10.2355/isijinternational.ISIJINT-2015-040
  • Wang L, Gao CR, Wang YF, et al. Effect of thermomechanical controlled processing parameters on microstructure and properties of Q460q steel. J Iron Steel Res Int. 2010;17:38–43. doi: 10.1016/S1006-706X(10)60042-8
  • Song R, Pong D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441:1–17. doi: 10.1016/j.msea.2006.08.095
  • Inoue T, Yin FX, Kimura Y, et al. Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling. Metall Mater Trans A. 2010;41:341–355. doi: 10.1007/s11661-009-0093-x
  • Jafari M, Kimura Y, Tsuzaki K. Enhancement of upper shelf energy through delamination fracture in 0.05 pct P doped high-strength steel. Metall Mater Trans A. 2012;43:2453–2465. doi: 10.1007/s11661-012-1095-7
  • Kimura Y, Inoue T, Yin FX, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320:1057–1059. doi: 10.1126/science.1156084
  • Zhao MC, Hanamura T, Qiu H, et al. Low absorbed energy ductile dimple fracture in lower shelf region in an ultrafine grained ferrite/cementite steel. Metall Mater Trans A. 2007;37:2897–2900. doi: 10.1007/BF02586122
  • Bourell DL. Cleavage delamination in impact tested warm-rolled steel. Metall Trans A. 1983;14:2487–2496. doi: 10.1007/BF02668890
  • Song R, Ponge D, Raabe D. Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 2005;53:4881–4892. doi: 10.1016/j.actamat.2005.07.009
  • Santos DB, Bruzszek RK, Rodrigues MPC, et al. Formation of ultra-fine ferrite microstructure in warm rolled and annealed C-Mn steel. Mater Sci Eng A. 2003;346:189–195. doi: 10.1016/S0921-5093(02)00519-1
  • Shen XJ, Tang S, Wu YJ, et al. Evolution of microstructure and crystallographic texture of microalloyed steel during warm rolling in dual phase region and their influence on mechanical properties. Mater Sci Eng A. 2017;685:194–204. doi: 10.1016/j.msea.2016.12.108
  • McQueen HJ. Elevated temperature deformation at forming rates of 10(2 to 102 s−1. Metall Trans A. 2002;33:345–362. doi: 10.1007/s11661-002-0096-3
  • Song R, Ponge D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater. 2005;53:845–858. doi: 10.1016/j.actamat.2004.10.051
  • Tsuji N, Matsubara Y, Saito Y. Dynamic recrystallization of ferrite in interstitial free steel. Scr Mater. 1997;37:477–484. doi: 10.1016/S1359-6462(97)00123-1
  • Kang JH, Torizuka S. Dynamic recrystallization by large strain deformation with a high strain rate in an ultralow carbon steel. Scr Mater. 2007;57:1048–1051. doi: 10.1016/j.scriptamat.2007.07.039
  • Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warm deformation of lath martensite in low-alloy steels with different carbon content. Scr Mater. 2008;59:279–281. doi: 10.1016/j.scriptamat.2008.03.041
  • Narayana Murty SVS, Torizuka S, Nagai K, et al. Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scr Mater. 2005;53:763–768. doi: 10.1016/j.scriptamat.2005.05.027
  • Ohmori A, Torizuka S, Nagai K, et al. Effect of deformation temperature and strain rate on evolution of ultraline grained structure through single-pass large-strain warm deformation in a low carbon steel. Mater Trans A. 2004;45:2224–2231. doi: 10.2320/matertrans.45.2224
  • Karmakar A, Misra RDK, Neogy S, et al. Development of ultrafine-grained dual-phase steels: mechanism of grain refinement during intercritical deformation. Metall Mater Trans A. 2003;44:4106–4118. doi: 10.1007/s11661-013-1757-0
  • Zhang CZ, Zhang MM, Guo TT, et al. Ferrite grain refinement in low carbon Cu–P–Cr–Ni–Mo weathering steel at various temperatures in the (α + γ) region. Mater Charact. 2016;113:10–16. doi: 10.1016/j.matchar.2015.12.033
  • Mayo U, Isasti N, Jorge-Badiola D, et al. An EBSD-based methodology for the characterization of intercritically deformed low carbon steel. Mater Charact. 2019;147:31–42. doi: 10.1016/j.matchar.2018.10.014
  • Shen XJ, Tang S, Chen J, et al. The effect of warm deforming and reversal austenization on the microstructure and mechanical properties of a microalloyed steel. Mater Sci Eng A. 2016;671:182–189. doi: 10.1016/j.msea.2016.06.036
  • Rui SS, Shang YB, Qiu WH, et al. Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis. J Mater Sci Tech. 2017;33:1582–1595. doi: 10.1016/j.jmst.2017.03.020
  • Britton TB, Birosca S, Preussb M, et al. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti–6Al–4 V alloy. Scr Mater. 2010;62:639–642. doi: 10.1016/j.scriptamat.2010.01.010
  • Cao Y, Di HS. Research on the hot deformation behavior of a Fe-Ni-Cr alloy (800H) at temperatures above 1000°C. J Nucl Mater. 2015;465:104–115. doi: 10.1016/j.jnucmat.2015.05.014
  • Chen J, Lv MY, Tang S, et al. Influence of thermomechanical control processes on the evolution of austenite grain size in a low carbon Nb-Ti bearing bainitic steel. J Mater Eng Perform. 2015;24:3852–3861. doi: 10.1007/s11665-015-1700-1
  • Zahiri SH, Hodgson PD. The static, dynamic and metadynamic recrystallization of a medium carbon steel. Mater Sci Technol. 2004;20:458–464. doi: 10.1179/026708304225012071
  • Mandal S, Sivaprasad PV, Sarma VS. Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation. Mater Sci Technol. 2010;25:54–59.
  • Humphryes FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed. Amesterdam: Elsevier; 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.