121
Views
0
CrossRef citations to date
0
Altmetric
Short Communications

Limiting grain size through high-pressure torsion of different materials

&
Pages 245-250 | Received 01 Aug 2019, Accepted 04 Nov 2019, Published online: 27 Nov 2019

References

  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Pippan R, Scheriau S, Hohenwarter A, et al. Advantages and limitations of HPT: a review. Mater Sci Forum. 2008;584:16–21. doi: 10.4028/www.scientific.net/MSF.584-586.16
  • Parvin H, Kazeminezhad M. Dependency modelling of steady state grain size on the stacking fault energy through severe plastic deformation. Mater Lett. 2015;159:410–412. doi: 10.1016/j.matlet.2015.07.041
  • Xu C, Horita Z, Langdon TG. The evolution of homogeneity in processing by high-pressure torsion. Acta Mater. 2007;55:203–212. doi: 10.1016/j.actamat.2006.07.029
  • Orlov D, Todaka Y, Umemoto M, et al. Role of strain reversal in grain refinement by severe plastic deformation. Mater Sci Eng A. 2009;499:427–433. doi: 10.1016/j.msea.2008.09.036
  • Zhilyaev AP, Lee S, Nurislamova GV, et al. Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater. 2001;44:2753–2758. doi: 10.1016/S1359-6462(01)00955-1
  • Zhilyaev AP, McNelley TR, Langdon TG. Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. J Mater Sci. 2007;42:1517–1528. doi: 10.1007/s10853-006-0628-0
  • Kato H, Todaka Y, Umemoto M, et al. Sliding wear behavior of sub-microcrystalline pure iron produced by high-pressure torsion straining. Wear. 2015;336:58–68. doi: 10.1016/j.wear.2015.04.014
  • Edalati K, Fujioka T, Horita Z. Evolution of mechanical properties and microstructures with equivalent strain in pure Fe processed by high pressure torsion. Mater Trans. 2009;50:44–50. doi: 10.2320/matertrans.MD200812
  • An XH, Lin QY, Wu SD, et al. The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu-Al alloys processed by high-pressure torsion. Scripta Mater. 2011;64:954–957. doi: 10.1016/j.scriptamat.2011.01.041
  • An X, Lin Q, Wu S, et al. Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys. Mater Res Lett. 2015;3:135–141. doi: 10.1080/21663831.2015.1029645
  • Edalati K, Horita Z. Significance of homologous temperature in softening behaviour and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A. 2011;528:7514–7523. doi: 10.1016/j.msea.2011.06.080
  • Zhao YH, Liao XZ, Zhu YT, et al. Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng A. 2005;410:188–193. doi: 10.1016/j.msea.2005.08.074
  • Gubicza J. Defect structure in nanomaterials. 1st ed. Cambridge: Woodhead Publishing; 2017.
  • Hegedűs Z, Gubicza J, Kawasaki M, et al. Microstructure of low stacking fault energy silver processed by different routes of severe plastic deformation. J Alloys Compd. 2012;536:S190–S193. doi: 10.1016/j.jallcom.2011.10.070
  • Matsunaga H, Horita Z. Softening and microstructural coarsening without twin formation in fcc metals with low stacking fault energy after processing by high-pressure torsion. Mater Trans. 2009;50:1633–1637. doi: 10.2320/matertrans.MF200921
  • Wadsack R, Pippan R, Schedler B. Development of microstructure and thermal stability of nano-structured chromium processed by severe plastic deformation. In: Zehetbauer MJ, Valiev RZ, editor. Nanomaterials by severe plastic deformation. Weinheim: Wiley-VCH; 2004. p. 654–659.
  • Lee S, Horita Z. High-pressure torsion for pure chromium and niobium. Mater Trans. 2012;53:38–45. doi: 10.2320/matertrans.MD201131
  • Popova EN, Popov VV, Romanov EP, et al. Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion. Phys Met Metallogr. 2007;103:407–413. doi: 10.1134/S0031918X0704014X
  • Voronova LM, Chashchukhina TI, Gapontseva TM, et al. Effect of the deformation temperature on the structural refinement of BCC metals with a high stacking fault energy during high-pressure torsion. Russ Metall. 2016;10:960–965. doi: 10.1134/S0036029516100232
  • Lee S, Edalati K, Horita Z. Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion. Mater Trans. 2010;51:1072–1079. doi: 10.2320/matertrans.M2009375
  • Huang Y, Lemang M, Zhang NX, et al. Achieving superior grain refinement and mechanical properties in vanadium through high-pressure torsion and subsequent short-term annealing. Mater Sci Eng A. 2016;655:60–69. doi: 10.1016/j.msea.2015.12.086
  • Pilyugin VP, Voronova LM, Gapontseva TM, et al. Structure and hardness of molybdenum upon deformation under pressure at room and cryogenic temperatures. Int J Refract Met. 2014;43:59–63. doi: 10.1016/j.ijrmhm.2013.10.022
  • Maury N, Zhang NX, Huang Y, et al. A critical examination of pure tantalum processed by high-pressure torsion. Mater Sci Eng A. 2015;638:174–182. doi: 10.1016/j.msea.2015.04.053
  • Edalati K, Horita Z. High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 2011;59:6831–6836. doi: 10.1016/j.actamat.2011.07.046
  • Kurmanaeva L, Ivanisenko Y, Markmann J, et al. Grain refinement and mechanical properties in ultrafine grained Pd and Pd-Ag alloys produced by HPT. Mater Sci Eng A. 2010;527:1776–1783. doi: 10.1016/j.msea.2009.11.001
  • Krasnoperova YG, Degtyarev MV, Chashchukhina TI, et al. Effect of chromium on the structure evolution in single-phase Ni-Cr alloys during high-pressure torsion. Russ Metall. 2017;10:858–861. doi: 10.1134/S0036029517100111
  • Yang K, Ivanisenko Y, Caron A, et al. Mechanical behaviour and in situ observation of shear bands in ultrafine grained Pd and Pd-Ag alloys. Acta Mater. 2010;58:967–978. doi: 10.1016/j.actamat.2009.10.013
  • Emeis F, Peterlechner M, Divinski SV, et al. Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu-Ni system. Acta Mater. 2018;150:262–272. doi: 10.1016/j.actamat.2018.02.054
  • Sun PL, Zhao YH, Cooley JC, et al. Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Mater Sci Eng A. 2009;525:83–86. doi: 10.1016/j.msea.2009.06.030
  • Edalati K, Akama D, Nishio A, et al. Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 2014;69:68–77. doi: 10.1016/j.actamat.2014.01.036
  • Bachmaier A, Hafok M, Pippan R. Rate independent and rate dependent structural evolution during severe plastic deformation. Mater Trans. 2010;51:8–13. doi: 10.2320/matertrans.MB200912
  • Andreau O, Gubicza J, Zhang NX, et al. Effect of short-term annealing on the microstructures and flow properties of an Al-1% Mg alloy processed by high-pressure torsion. Mater Sci Eng A. 2014;615:231–239. doi: 10.1016/j.msea.2014.07.018
  • Ma Y, Horita Z, Furukawa M, et al. Yield stress measurements on an Al-1.5% Mg alloy with submicron grain size using a miniature bending procedure. Mater Lett. 1995;23:283–287. doi: 10.1016/0167-577X(95)00047-X
  • Lee SW, Horita Z. Annealing behaviour of FeNi alloy processed by high-pressure torsion. Mater Sci Forum. 2011;667:313–318.
  • Hafok M, Pippan R. Influence of stacking fault energy and alloying on stage V hardening of HPT-deformed materials: Dedicated to Professor Dr. H.-P. Degischer on the occasion of his 65th birthday. Int J Mater Res. 2010;101:1097–1104. doi: 10.3139/146.110389
  • Iwaoka H, Ide T, Arita M, et al. Mechanical property and hydrogen permeability of ultrafine-grained Pd-Ag alloy processed by high-pressure torsion. Int J Hydrogen Energy. 2017;42:24176–24182. doi: 10.1016/j.ijhydene.2017.07.235
  • Cai B, Tao J, Wang W, et al. The effect of stacking fault energy on equilibrium grain size and tensile properties of ultrafine-grained Cu-Al-Zn alloys processed by rolling. J Alloys Compd. 2014;610:224–230. doi: 10.1016/j.jallcom.2014.04.200
  • Mohamed FA, Dheda SS. On the minimum grain size obtainable by high-pressure torsion. Mater Sci Eng, A. 2012;558:59–63. doi: 10.1016/j.msea.2012.07.066
  • Gubicza J, Chinh NQ, Lábár JL, et al. Microstructure and yield strength of severely deformed silver. Scripta Mater. 2008;58:775–778. doi: 10.1016/j.scriptamat.2007.12.028
  • Prinz F, Argon AS, Moffatt WC. Recovery of dislocation structures in plastically deformed copper and nickel single crystals. Acta Metall. 1982;30:821–830. doi: 10.1016/0001-6160(82)90080-3
  • Argon A, Moffatt WC. Climb of extended edge dislocations. Acta Metall. 1981;29:293–299. doi: 10.1016/0001-6160(81)90156-5
  • Sun WT, Xu C, Qiao XG, et al. Evolution of microstructure and mechanical properties of an as-cast Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high-pressure torsion. Mater Sci Eng A. 2017;700:312–320. doi: 10.1016/j.msea.2017.05.115
  • Zhu YT, Langdon TG, Horita Z, editors. et al. Ultrafine grained materials IV. Warrendale (PA): The Minerals, Metals and Materials Society; 2006.
  • Sakai G, Horita Z, Langdon TG. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng, A. 2005;393:344–351. doi: 10.1016/j.msea.2004.11.007
  • Mohamed FA, Dheda SS. On the minimum grain size obtainable by equal channel angular pressing. Mater Sci Eng, A. 2013;580:227–230. doi: 10.1016/j.msea.2013.04.104
  • Dong J, Dong Q, Dai Y, et al. Microstructure evolution in high purity aluminium single crystal processed by equal channel angular pressing (ECAP). Materials (Basel). 2017;10:87–94. doi: 10.3390/ma10010087
  • Heczel A, Kawasaki M, Lábár JL, et al. Defect structure and hardness in nanocrystalline CoCrFeMnNi high-entropy alloy processed by high-pressure torsion. J Alloys Compd. 2017;711:143–154. doi: 10.1016/j.jallcom.2017.03.352
  • Mohamed FA. A dislocation model for the minimum grain size obtainable by milling. Acta Mater. 2003;51:4107–4119. doi: 10.1016/S1359-6454(03)00230-1
  • Mohamed FA. Correlation between the behavior of nanocrystalline HCP metals and the dislocation model for the minimum grain size obtainable by milling. Mater Sci Eng A. 2010;527:2157–2162. doi: 10.1016/j.msea.2009.10.012
  • Morishige T, Hirata T, Uesugi T, et al. Effect of Mg content on the minimum grain size of Al-Mg alloys obtained by friction stir processing. Scripta Mater. 2011;64:355–358. doi: 10.1016/j.scriptamat.2010.10.033
  • Lu S, Hu QM, Delczeg-Czirjak EK, et al. Determining the minimum grain size in severe plastic deformation process via first-principles calculations. Acta Mater. 2012;60:4506–4513. doi: 10.1016/j.actamat.2012.04.024
  • Huang CX, Hu W, Yang G, et al. The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing. Mater Sci Eng A. 2012;556:638–647. doi: 10.1016/j.msea.2012.07.041
  • Zhao YH, Zhu YT, Liao XZ, et al. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A. 2007;463:22–26. doi: 10.1016/j.msea.2006.08.119
  • Wan H, Shen Y, Jin X, et al. Effects of coherency stress and vacancy sources/sinks on interdiffusion across coherent multilayer interfaces-Part I: Theory. Acta Mater. 2012;60:2528–2538. doi: 10.1016/j.actamat.2012.01.021
  • San XY, Liang XG, Chen LP, et al. Influence of stacking fault energy on the mechanical properties in cold-rolling Cu and Cu–Ge alloys. Mater Sci Eng A. 2011;528:7867–7870. doi: 10.1016/j.msea.2011.07.023
  • Youssef K, Sakaliyska M, Bahmanpour H, et al. Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Mater. 2011;59:5758–5764. doi: 10.1016/j.actamat.2011.05.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.