280
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Characterisation on Al-bearing hot-rolled TRIP steel produced through isothermal bainite transformation

, , ORCID Icon, , &
Pages 210-222 | Received 14 Aug 2019, Accepted 15 Nov 2019, Published online: 26 Nov 2019

References

  • Fielding LCD. The bainite controversy. Mater Sci Technol. 2013;29:383–399. doi: 10.1179/1743284712Y.0000000157
  • Li ZL, Chen D, Kang J, et al. The effect of heat treatment and precipitation on grain growth of TRIP steel. Steel Res Int. 2018;89:1–4.
  • Jacques PJ, Girault E, Mertens A, et al. The developments of cold-rolled TRIP-assisted multiphase steels. Al-alloyed TRIP-assisted multiphase steels. ISIJ Int. 2001;41:1068–1074. doi: 10.2355/isijinternational.41.1068
  • Suh DW, Park SJ, Oh CS, et al. Influence of partial replacement of Si by Al on the change of phase fraction during heat treatment of TRIP steels. Scr Mater. 2007;57:1097–1100. doi: 10.1016/j.scriptamat.2007.08.022
  • Ranjan R, Beladi H, Singh SB, et al. Thermo-mechanical processing of TRIP-aided steels. Metall Mater Trans A. 2015;46:3232–3247. doi: 10.1007/s11661-015-2885-5
  • Zhu KY, Mager C, Huang MX. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels. J Mater Sci Technol. 2017;33:1475–1486. doi: 10.1016/j.jmst.2017.09.002
  • Injeti VSY, Li ZC, Yu B, et al. Macro to nanoscale deformation of transformation-induced plasticity steels: impact of aluminum on the microstructure and deformation behavior. J Mater Sci Technol. 2018;34:11–21. doi: 10.1016/j.jmst.2017.11.011
  • Huang HQ, Di HS, Yan N, et al. Hot deformation behavior and processing maps of a high Al-low Si transformation-induced plasticity steel: microstructural evolution and flow stress behavior. Acta Metall Sin (Engl Lett). 2018;31:503–514. doi: 10.1007/s40195-017-0676-2
  • Yin YY, Fang F, Fan ZJ. Microstructure and mechanical properties of hot rolled TRIP steel based on dynamic transformation of undercooled austenite. Advan Mater Res. 2011;152:1038–1043.
  • Fu B, Yang WY, Lu MY, et al. Microstructure and mechanical properties of C-Mn-Al-Si hot-rolled TRIP steels with and without Nb based on dynamic transformation. Mater Sci Eng A. 2012;536:265–268. doi: 10.1016/j.msea.2012.01.012
  • Hanzaki AZ, Pandi R, Hodgson PD, et al. Continuous cooling deformation testing of steels. Metall Mater Trans A. 1993;24:2657–2665. doi: 10.1007/BF02659490
  • Hosseini SMK, Hanzaki AZ, Panah MJY, et al. ANN model for prediction of the effects of composition and process parameters on tensile strength and percent elongation of Si-Mn TRIP steels. Mater Sci Eng A. 2004;374:122–128. doi: 10.1016/j.msea.2004.01.007
  • Wang HS, Kang J, Dou WX, et al. Microstructure and mechanical properties of hot-rolled and heat-treated TRIP steel with direct quenching process. Mater Sci Eng A. 2017;702:350–359. doi: 10.1016/j.msea.2017.07.039
  • Van Dijk NH, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53:5439–5447. doi: 10.1016/j.actamat.2005.08.017
  • Li YJ, Li XL, Yuan G, et al. Microstructure and partitioning behavior characteristics in low carbon steels treated by hot-rolling direct quenching and dynamical partitioning processes. Mater Charact. 2016;121:157–165. doi: 10.1016/j.matchar.2016.10.005
  • Xu DC, Li J, Meng QG, et al. Effect of heating rate on microstructure and mechanical properties of TRIP-aided multiphase steel. J Alloys Comp. 2014;614: 94–101. doi: 10.1016/j.jallcom.2014.06.075
  • Lawrynowicz Z. Carbon partitioning during bainite transformation in low alloy steels. Mater Sci Technol. 2002;18:1322–1324. doi: 10.1179/026708302225007259
  • Bramfitt BL, Speer JG. A perspective on the morphology of bainite. Metall Trans A. 1990;21:817–829. doi: 10.1007/BF02656565
  • Babu SS, Specht ED, David SA, et al. In-situobservations of lattice parameter fluctuations in austenite and transformation to bainite. Metall Mater Tans A. 2005;36:3281–3289. doi: 10.1007/s11661-005-0002-x
  • Alharbi F, Gazder AA, Kostryzhev A, et al. The effect of processing parameters on the microstructure and mechanical properties of low-Si transformation-induced plasticity steels. J Mater Sci. 2014;49:2960–2974. doi: 10.1007/s10853-013-8008-z
  • Jung IC, Kang DG, De Cooman BC. Impulse excitation internal friction study of dislocation and point defect interactions in ultra-low carbon bake-hardenable steel. Metall Mater Trans A. 2014;45:1962–1978. doi: 10.1007/s11661-013-2122-z
  • Cabellero FG, Yen HW, Miller MK, et al. Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater. 2011;59:6117–6123. doi: 10.1016/j.actamat.2011.06.024
  • Cabellero FG, Miller MK, Babu SS, et al. Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater. 2007;55:381–390. doi: 10.1016/j.actamat.2006.08.033
  • Timokhina IB, Hodgson PD, Pereloma EV. Transmission electron microscopy characterization of the bake-hardening behavior of transformation-induced plasticity and dual-phase steels. Metall Mater Trans A. 2007;38:2442–2454. doi: 10.1007/s11661-007-9258-7
  • Jacques PJ, Delannay F, Ladriere J. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A. 2001;32:2759–2768. doi: 10.1007/s11661-001-1027-4
  • Kamikawa N, Sato K, Miyamoto G, et al. Stress-strain behavior of ferrite and bainite with nano-precipitation in low carbon steels. Acta Mater. 2015;83:383–396. doi: 10.1016/j.actamat.2014.10.010
  • Anijdan SHM, Yue S. The effect of cooling rate, and cool deformation through strain-induced transformation, on microstructural evolution and mechanical properties of microalloyed steels. Metall Mater Trans A. 2012;43:1140–1162. doi: 10.1007/s11661-011-0958-7
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15:30–36. doi: 10.1179/026708399773002782
  • Pereloma E, Beladi H, Zhang LC, et al. Understanding the behavior of advanced high-strength steels using atom probe tomography. Metall Mater Trans A. 2012;43:3958–3971. doi: 10.1007/s11661-011-0782-0
  • Chiang J, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Mater Sci Eng A. 2015;638:132–142. doi: 10.1016/j.msea.2015.03.069
  • Chiang J, Lawrence B, Boyd JD, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A. 2011;528: 4516–4521. doi: 10.1016/j.msea.2011.02.032
  • Miihkinen VTT, Edmonds DV. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon. Mater Sci Technol. 1987;3:441–449. doi: 10.1179/mst.1987.3.6.441
  • Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr Mater. 2013;68: 321–324. doi: 10.1016/j.scriptamat.2012.11.003
  • Li YJ, Chen D, Li XL, et al. Microstructural evolution and dynamic partitioning behavior in quenched and partitioned steels. Steel Res Int. 2018;89:1–11.
  • Li LF, Zhang XJ, Yang WY, et al. Microstructure and mechanical properties of a low-carbon Mn-Si multiphase steel based on dynamic transformation of undercooled austenite. Metall Mater Trans A. 2013;44: 4337–4345. doi: 10.1007/s11661-013-1785-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.