339
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and mechanical properties of TA1/3A21 composite plate fabricated via explosive welding

, , , , ORCID Icon, , & show all
Pages 425-433 | Received 13 Aug 2019, Accepted 13 Dec 2019, Published online: 03 Jan 2020

References

  • He G, Eckert J, Loser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater. 2003;2(1):33–37. doi: 10.1038/nmat792
  • Chen YB, Chen SH, Li LQ. Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method. Int J Adv Manuf Tech. 2009;44(3–4):265–272. doi: 10.1007/s00170-008-1837-2
  • Gao M, Mei SW, Li XY, et al. Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer. Scripta Mater. 2012;67(2):193–196. doi: 10.1016/j.scriptamat.2012.04.015
  • Chen YB, Chen SH, Li LQ. Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing. Mater Design. 2010;31(1):227–233. doi: 10.1016/j.matdes.2009.06.029
  • Wan L, Lv S, Huang Y, et al. Effect of hot dip aluminising on interfacial microstructure and mechanical properties of Ti/Al joint by TIG arc welding brazing. Sci Technol Weld Joi. 2015;20(2):164–171. doi: 10.1179/1362171814Y.0000000267
  • Kenevisi MS, Mousavi Khoie SM. An investigation on microstructure and mechanical properties of Al7075 to Ti–6Al–4V transient liquid phase (TLP) bonded joint. Mater Design. 2012;38:19–25. doi: 10.1016/j.matdes.2012.01.046
  • Xiao H, Qi Z, Yu C, et al. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling. J Mater Process Tech. 2017;249:285–290. doi: 10.1016/j.jmatprotec.2017.06.013
  • Zhang X, Yu Y, Liu B, et al. In-situ investigation of deformation behavior and fracture mechanism of laminated Al/Ti composites fabricated by hot rolling. J Alloy Compd. 2019;783:55–65. doi: 10.1016/j.jallcom.2018.12.272
  • Sun QJ, Li JZ, Liu YB, et al. Microstructural characterization and mechanical properties of Al/Ti joint welded by CMT method-Assisted hybrid magnetic field. Mater Design. 2017;116:316–324. doi: 10.1016/j.matdes.2016.12.025
  • Li B, Shen Y, Luo L, et al. Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding. J Alloy Compd. 2016;658:904–913. doi: 10.1016/j.jallcom.2015.10.288
  • Casalino G, Mortello M. Modeling and experimental analysis of fiber laser offset welding of Al-Ti butt joints. Int J Adv Manuf Tech. 2016;83(1-4):89–98. doi: 10.1007/s00170-015-7562-8
  • Song ZH, Nakata K, Wu AP, et al. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mat Sci Eng a-Struct. 2013;560:111–120. doi: 10.1016/j.msea.2012.09.044
  • Qin L, Wang J, Wu Q, et al. In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J Alloy Compd. 2017;712:69–75. doi: 10.1016/j.jallcom.2017.04.063
  • Xia HB, Wang SG, Ben HF. Microstructure and mechanical properties of Ti/Al explosive cladding. Mater Design. 2014;56:1014–1019. doi: 10.1016/j.matdes.2013.12.012
  • Foadian F, Soltanieh M, Adeli M, et al. A study on the formation of Intermetallics during the heat treatment of explosively welded Al-Ti multilayers. Metall Mater Trans A. 2014;45A(4):1823–1832. doi: 10.1007/s11661-013-2144-6
  • Mali VI, Pavliukova DV, Bataev IA, et al. Formation of the intermetallic layers in Ti-Al multilayer composites. Adv mater process. 2011. p. 236–239.
  • Bataev IA, Bataev AA, Mali VI, et al. Nucleation and growth of titanium aluminide in an explosion-welded laminate composite. Phys Met Metallogr+. 2012;113(10):947–956. doi: 10.1134/S0031918X12070022
  • Bataev IA, Bataev AA, Mali VI, et al. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing. Mater Design. 2012;35:225–234. doi: 10.1016/j.matdes.2011.09.030
  • Fronczek DM, Wojewoda-Budka J, Chulist R, et al. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater Design. 2016;91:80–89. doi: 10.1016/j.matdes.2015.11.087
  • Fronczek DM, Wierzbicka-Miernik A, Saksl K, et al. The intermetallics growth at the interface of explosively welded A1050/Ti gr. 2/A1050 clads in relation to the explosive material. Arch Civ Mech Eng. 2018;18(4):1679–1685. doi: 10.1016/j.acme.2018.07.007
  • Chulist R, Fronczek DM, Szulc Z, et al. Texture transformations near the bonding zones of the three-layer Al/Ti/Al explosively welded dads. Mater Charact. 2017;129:242–246. doi: 10.1016/j.matchar.2017.05.007
  • Phillpchuk V. Explosive welding and forming open another door for industry. Weld Eng. 1959;44:61–64.
  • J JCE, Huang Y, Bie BX, et al. Deformation and fracture of explosion-welded Ti/Al plates: a synchrotron-based study. Mat Sci Eng a-Struct. 2016;674:308–317. doi: 10.1016/j.msea.2016.07.125
  • Bazarnik P, Adamczyk-Cieslak B, Galka A, et al. Mechanical and microstructural characteristics of Ti6Al4 V/AA2519 and Ti6Al4 V/AA1050/AA2519 laminates manufactured by explosive welding. Mater Design. 2016;111:146–157. doi: 10.1016/j.matdes.2016.08.088
  • Findik F. Recent developments in explosive welding. Mater Design. 2011;32(3):1081–1093. doi: 10.1016/j.matdes.2010.10.017
  • Bataev IA, Lazurenko DV, Tanaka S, et al. High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Mater. 2017;135:277–289. doi: 10.1016/j.actamat.2017.06.038
  • Zhang LJ, Pei Q, Zhang JX, et al. Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet. Mater Design. 2014;64:462–476. doi: 10.1016/j.matdes.2014.08.013
  • Xie MX, Zhang LJ, Zhang GF, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Design. 2015;87:181–197. doi: 10.1016/j.matdes.2015.08.021
  • Gulenc B. Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Mater Design. 2008;29(1):275–278. doi: 10.1016/j.matdes.2006.11.001
  • Zhang N, Wang WX, Cao XQ, et al. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater Design. 2015;65:1100–1109. doi: 10.1016/j.matdes.2014.08.025
  • Mendes R, Ribeiro JB, Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater Design. 2013;51:182–192. doi: 10.1016/j.matdes.2013.03.069
  • Paul H, Miszczyk MM, Chulist R, et al. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Design. 2018;153:177–189. doi: 10.1016/j.matdes.2018.05.014
  • Fronczek DM, Chulist R, Litynska-Dobrzynska L, et al. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater Design. 2017;130:120–130. doi: 10.1016/j.matdes.2017.05.051
  • Prasanthi TN, Sudha RC, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Design. 2016;93:180–193. doi: 10.1016/j.matdes.2015.12.120
  • Mousavi SAAA, Sartangi PF. Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel. Mater Design. 2009;30(3):459–468. doi: 10.1016/j.matdes.2008.06.016
  • Zhang H, Jiao KX, Zhang JL, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater Design. 2018;154:140–152. doi: 10.1016/j.matdes.2018.05.027
  • Loureiro A, Mendes R, Ribeiro JB, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium. Mater Design. 2016;95:256–267. doi: 10.1016/j.matdes.2016.01.116
  • Chu QL, Zhang M, Li JH, et al. 5 Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mat Sci Eng a-Struct. 2017;689:323–331. doi: 10.1016/j.msea.2017.02.075
  • Rajani HRZ, Mousavi SAAA. The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mat Sci Eng a-Struct. 2012;556:454–464. doi: 10.1016/j.msea.2012.07.012
  • Zhang H, Jiao KX, Zhang JL, et al. Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding. Mat Sci Eng a-Struct. 2018;731:278–287. doi: 10.1016/j.msea.2018.06.051
  • Li XJ, Ma HH, Shen ZW. Research on explosive welding of aluminum alloy to steel with dovetail grooves. Mater Design. 2015;87:815–824. doi: 10.1016/j.matdes.2015.08.085
  • Wronka B. Testing of explosive welding and welded joints: joint mechanism and properties of explosive welded joints. J Mater Sci. 2010;45(15):4078–4083. doi: 10.1007/s10853-010-4494-4
  • Bataev IA, Bataev AA, Mali VI, et al. Structural changes of surface layers of steel plates in the process of explosive welding. Met Sci Heat Treat+. 2014;55(9-10):509–513. doi: 10.1007/s11041-014-9663-7
  • Borchers C, Lenz M, Deutges M, et al. Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding. Mater Design. 2016;89:369–376. doi: 10.1016/j.matdes.2015.09.164
  • Schuster JC, Palm M. Reassessment of the binary aluminum-titanium phase diagram. J Phase Equilib Diff. 2006;27(3):255–277. doi: 10.1361/154770306X109809
  • Fang Z, Shi C, Sun Z, et al. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding. Mater Res Express. 2019;6(10):1–13. doi: 10.1088/2053-1591/ab410a
  • Aonuma M, Nakata K. Dissimilar metal joining of 2024 and 7075 Aluminium alloys to titanium alloys by friction stir welding. Mater Trans. 2011;52(5):948–952. doi: 10.2320/matertrans.L-MZ201102
  • AlHazaa A, Khan TI, Haq I. Transient liquid phase (TLP) bonding of Al7075 to Ti–6Al–4V alloy. Mater Charact. 2010;61(3):312–317. doi: 10.1016/j.matchar.2009.12.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.