206
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Development of a new integrated severe plastic deformation method

ORCID Icon, & ORCID Icon
Pages 468-476 | Received 16 Aug 2019, Accepted 29 Dec 2019, Published online: 08 Jan 2020

References

  • Yin DL, Zhang KF, Wang GF, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy. Mater Sci Eng A. 2005;392:320–325. doi: 10.1016/j.msea.2004.09.039
  • Wu G, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys – a review. Surf Coat Technol. 2013;233:2–12. doi: 10.1016/j.surfcoat.2012.10.009
  • Blawert C, Hort N, Kainer KU. Automative applications of magnesium and its alloys. Trans Indian Inst Met. 2006;57:397–408.
  • Prasad YVRK, Rao KP. Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy. Mater Des. 2009;30(9):3723–3730. doi: 10.1016/j.matdes.2009.02.006
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Kang SH, Lee YS, Lee JH. Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J Mater Process Technol. 2008;201:436–440. doi: 10.1016/j.jmatprotec.2007.11.305
  • Janeček M, Popov M, Krieger MG, et al. Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater Sci Eng A. 2007;462:116–120. doi: 10.1016/j.msea.2006.01.174
  • Guo W, Wang Q, Ye B, et al. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. J Alloys Compd. 2013;558:164–171. doi: 10.1016/j.jallcom.2013.01.035
  • Fata A, Eftekhari M, Faraji G, et al. Enhanced hot tensile ductility of Mg-3Al-1Zn alloy thin-walled tubes processed via a combined severe plastic deformation. J Mater Eng Perform. 2017;27(5):2330–2337. doi: 10.1007/s11665-018-3350-6
  • Fata A, Faraji G, Mashhadi MM, et al. Hot tensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation. Mater Sci Eng A. 2016;674:9–17. doi: 10.1016/j.msea.2016.07.117
  • Yuan R, Wu Z, Cai H, et al. Effects of extrusion parameters on tensile properties of magnesium alloy tubes fabricated via hydrostatic extrusion integrated with circular ECAP. Mater Des. 2016;101:131–136. doi: 10.1016/j.matdes.2016.03.141
  • Orlov D, Raab G, Lamark TT, et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 2011;59(1):375–385. 2011/01/01. doi: 10.1016/j.actamat.2010.09.043
  • Estrin Y, Janecek M, Raab GI, et al. Severe plastic deformation as a means of producing ultra-fine-grained net-shaped micro electro-mechanical systems parts. Metall Mater Trans A. 2007;38(9):1906–1909. 2007/09/01. doi: 10.1007/s11661-007-9120-y
  • Lu L, Liu C, Zhao J, et al. Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method. J Alloys Compd. 2015;628:130–134. doi: 10.1016/j.jallcom.2014.12.196
  • Richert M, McQueen HJ, Richert J. Microband formation in cyclic extrusion. Can Metal Quar. 1998;37(5):449–457.
  • Iwahashi Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater. 1996;35:143–146. doi: 10.1016/1359-6462(96)00107-8
  • Chakrabarti D, Davis CL, Strangwood M. Characterisation of bimodal grain structures and their dependence on inhomogeneous precipitate distribution during casting. Mater Sci Forum. 2005;501:613–621. doi: 10.4028/www.scientific.net/MSF.500-501.613
  • Chen YJ, Wang QD, Roven HJ, et al. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression. J Alloys Compd. 2008;462:192–200. doi: 10.1016/j.jallcom.2007.07.116
  • Chino Y, Kobata M, Iwasaki H, et al. An investigation of compressive deformation behaviour for AZ91 Mg alloy containing a small volume of liquid. Acta Mater. 2003;51:3309–3318. doi: 10.1016/S1359-6454(03)00162-9
  • Xu J, Shirooyeh M, Wongsa-Ngam J, et al. Hardness homogeneity and micro-tensile behavior in a magnesium AZ31 alloy processed by equal-channel angular pressing. Mater Sci Eng A. 2013;586:108–114. doi: 10.1016/j.msea.2013.07.096
  • Xu J, Wang X, Shirooyeh M, et al. Microhardness, microstructure and tensile behavior of an AZ31 magnesium alloy processed by high-pressure torsion. J Mater Sci. 2015;50:7424–7436. doi: 10.1007/s10853-015-9300-x
  • Amani S, Faraji G, Mehrabadi HK, et al. A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application. J Alloys Compd. 2017;723:467–476. doi: 10.1016/j.jallcom.2017.06.201
  • Chao HY, Yang Y, Wang X, et al. Effect of grain size distribution and texture on the cold extrusion behavior and mechanical properties of AZ31 Mg alloy. Mater Sci Eng A. 2011;528(9):3428–3434. doi: 10.1016/j.msea.2011.01.020
  • Yu H, Xin Y, Wang M, et al. Hall-Petch relationship in Mg alloys: a review. J Mater Sci Technol. 2018;34:248–256. doi: 10.1016/j.jmst.2017.07.022
  • Amani S, Faraji G, Abrinia K. Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). J Manuf Process. 2017;28:197–208. doi: 10.1016/j.jmapro.2017.06.007
  • Stanford N, Barnett MR. 2 g Solute strengthening of prismatic slip, basal slip and f 1 0 1 twinning in Mg and Mg – Zn binary alloys. Int J Plast. 2013;47:165–181. doi: 10.1016/j.ijplas.2013.01.012
  • Li X, Zhang J, Hou D, et al. Compressive deformation and fracture behaviors of AZ31 magnesium alloys with equiaxed grains and bimodal grains. Mater Sci Eng A. 2018;729:466–476. doi: 10.1016/j.msea.2018.05.081
  • Xu S, Zhao G, Ren G, et al. Numerical simulation and experimental investigation of pure copper deformation behavior for equal channel angular pressing/extrusion process. Comput Mater Sci. 2008;44(2):247–252. doi: 10.1016/j.commatsci.2008.03.032
  • Faraji G, Babaei A, Mashhadi MM, et al. Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett. 2012;77:82–85. doi: 10.1016/j.matlet.2012.03.007
  • Guo Q, Yan HG, Zhang H, et al. Behaviour of AZ31 magnesium alloy during compression at elevated temperatures. Mater Sci Technol. 2005;21(11):1349–1355. doi: 10.1179/174328405X62387
  • Zehetbauer MJ, Stüwe HP, Vorhauer A, et al. The role of hydrostatic pressure in severe plastic deformation. Adv Eng Mater. 2003;5:330–337. doi: 10.1002/adem.200310090
  • Zhang D, Li S. Orientation dependencies of mechanical response, microstructure and texture evolution in hot compression of AZ31 magnesium alloy processed by equal channel angular extrusion. Mater Sci Eng A. 2011;528(15):4982–4987. doi: 10.1016/j.msea.2011.02.094
  • Hokka M, Seidt J, Matrka T, et al. Compression behavior of Near-UFG AZ31 Mg-alloy at high strain Rates. Dyn Behav Mater. 2011;1:295–301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.