588
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Microstructure and mechanical properties of precipitation-hardened cast high-entropy superalloys

, , &
Pages 477-483 | Received 15 Sep 2019, Accepted 29 Dec 2019, Published online: 08 Jan 2020

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19(5):698–706. doi: 10.1016/j.intermet.2011.01.004
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78. doi: 10.1016/j.intermet.2013.03.018
  • Stepanov ND, Shaysultanov DG, Tikhonovsky MA, et al. Structure and high temperature mechanical properties of novel nonequiatomic Fe-(Co,Mn)-Cr-Ni-Al-(Ti) high entropy alloys. Intermetallics. 2018;102:140–151. doi: 10.1016/j.intermet.2018.09.010
  • Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr Mater. 2016;120:85–89. doi: 10.1016/j.scriptamat.2016.04.014
  • Shaysultanov DG, Salishchev GA, Ivanisenko YV, et al. Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure. J Alloys Compd. 2017;705:756–763. doi: 10.1016/j.jallcom.2017.02.211
  • Zhou Y, Jin X, Zhang L, et al. A hierarchical nanostructured Fe34Cr34Ni14Al14Co4 high-entropy alloy with good compressive mechanical properties. Mater Sci Eng: A. 2018;716:235–239. doi: 10.1016/j.msea.2018.01.034
  • Li C, Ma Y, Hao J, et al. Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni,Co,Fe,Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation. Mater Sci Eng: A. 2018;737:286–296. doi: 10.1016/j.msea.2018.09.060
  • Chang Y-J, Yeh A-C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. J Alloys Compd. 2015;653:379–385. doi: 10.1016/j.jallcom.2015.09.042
  • Daoud HM, Manzoni AM, Wanderka N, et al. High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM. 2015;67:2271–2277. doi: 10.1007/s11837-015-1484-7
  • Pandey P, Kashyap S, Palanisamy D, et al. On the high temperature coarsening kinetics of γ′ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy. Acta Mater. 2019;177:82–95. doi: 10.1016/j.actamat.2019.07.011
  • Tsao T-K, Yeh A-C, Kuo C-M, et al. The high temperature tensile and creep behaviors of high entropy superalloy. Sci Rep. 2017;7:1–9. doi: 10.1038/s41598-016-0028-x
  • Zhang L, Zhou Y, Jin X, et al. The microstructure and high-temperature properties of novel nano precipitation-hardened face centered cubic high-entropy superalloys. Scr Mater. 2018;146:226–230. doi: 10.1016/j.scriptamat.2017.12.001
  • Zhao YL, Yang T, Zhu JH, et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr Mater. 2018;148:51–55. doi: 10.1016/j.scriptamat.2018.01.028
  • Choudhuri D, Alam T, Borkar T, et al. Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr Mater. 2015;100:36–39. doi: 10.1016/j.scriptamat.2014.12.006
  • Detrois M, Jablonski PD, Antonov S, et al. Design and thermomechanical properties of a γ′ precipitate-strengthened Ni-based superalloy with high entropy γ matrix. J Alloys Compd. 2019;792:550–560. doi: 10.1016/j.jallcom.2019.04.054
  • Maciejewski K, Jouiad M, Ghonem H. Dislocation/precipitate interactions in IN100 at 650°C. Mater Sci Eng: A. 2013;582:47–54. doi: 10.1016/j.msea.2013.06.004
  • Ahmadi MR, Rath M, Povoden-Karadeniz E, et al. Modeling of precipitation strengthening in Inconel 718 including non-spherical γ″ precipitates. Model Simul Mater Sci. 2017;25:055005. doi: 10.1088/1361-651X/aa6f54
  • Shenoy M, Tjiptowidjojo Y, Mcdowell D. Microstructure-sensitive modeling of polycrystalline IN 100. Int J Plast. 2008;24(10):1694–1730. doi: 10.1016/j.ijplas.2008.01.001
  • Milligan WW, Orth EL, Schirra JJ, et al. Effects of microstructure on the high temperature constitutive behavior of IN100. Superalloys. 2004;331–339. doi: 10.7449/2004/Superalloys_2004_331_339
  • Fleischer RL. Substitutional solution hardening. Acta Metall. 1963;11:203–209. doi: 10.1016/0001-6160(63)90213-X
  • Courtney TH. Mechanical behavior of materials. New York: McGraw-Hill Press; 1990.
  • Mishima Y, Ochiai S, Hamao N, et al. Solid solution hardening of nickel-role of transition metal and B-subgroup solutes. Trans Jpn Inst Met. 2007;27:656–664. doi: 10.2320/matertrans1960.27.656
  • Zhang L, Zhou Y, Jin X, et al. Precipitation-hardened high entropy alloys with excellent tensile properties. Mater Sci Eng: A. 2018;732:186–191. doi: 10.1016/j.msea.2018.06.102
  • Huther W, Reppich B. Interaction of dislocations with coherent, stress-free ordered particles. Z Metallkd. 1978;69:628–634.
  • Reppich B, Schepp P, Wehner G. Some new aspects concerning particle hardening mechanisms in γ′ precipitating nickel-base alloys – II. Experiments. Acta Metall. 1982;30:95–104. doi: 10.1016/0001-6160(82)90049-9
  • Zhao YY, Chen HW, Lu ZP, et al. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater. 2018;147:184–194. doi: 10.1016/j.actamat.2018.01.049
  • Raujol S, Pettinari F, Locq D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy. Mater Sci Eng: A. 2004;387–389:678–682. doi: 10.1016/j.msea.2004.02.091
  • Billot T, Villechaise P, Jouiad M, et al. Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy. Int J Fatigue. 2010;32:824–829. doi: 10.1016/j.ijfatigue.2009.07.003
  • Tian WH, Sano T, Nemoto M. Hardening of ordered γ′-Ni3(Al, Ti) by precipitation of disordered γ. Scr Metall. 1986;20:933–936. doi: 10.1016/0036-9748(86)90469-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.