202
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Ternary polyurethane nanocomposites with remarkable electrical conductivity

, , , , , , & show all
Pages 540-547 | Received 22 Sep 2019, Accepted 07 Jan 2020, Published online: 26 Jan 2020

References

  • Sun Q, Kim J-H, Park J-H, et al. Characteristics of a pentacene thin film transistor with periodic groove patterned poly (methylmethacrylate) dielectrics. Appl Phys Lett. 2010;96(10):103301. doi: 10.1063/1.3354020
  • Ratcliff EL, Lee PA, Armstrong NR. Work function control of hole-selective polymer/ITO anode contacts: an electrochemical doping study. J Mater Chem. 2010;20(13):2672–2679. doi: 10.1039/b923201j
  • Yoon B-J, Hong EH, Jee SE, et al. Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. J Am Chem Soc. 2005;127(23):8234–8235. doi: 10.1021/ja043823n
  • Li J, Hu L, Liu J, et al. Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. Appl Phys Lett. 2008;93(8):083306. doi: 10.1063/1.2970049
  • Zhang WF, He ZB, Yuan GD, et al. High-performance, fully transparent, and flexible zinc-doped indium oxide nanowire transistors. Appl Phys Lett. 2009;94(12):123103. doi: 10.1063/1.3100194
  • Leterrier Y, Médico L, Demarco F, et al. Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films. 2004;460(1):156–166. doi: 10.1016/j.tsf.2004.01.052
  • Rahy A, Bajaj P, Musselman IH, et al. Coating of carbon nanotubes on flexible substrate and its adhesion study. Appl Surf Sci. 2009;255(15):7084–7089. doi: 10.1016/j.apsusc.2009.03.048
  • Liu B-T, Hsu C-H. Anti-scratch and transparency properties of transparent conductive carbon nanotube films improved by incorporating polyethoxysiloxane. J Colloid Interface Sci. 2011;359(2):423–427. doi: 10.1016/j.jcis.2011.04.026
  • Saran N, Parikh K, Suh D-S, et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc. 2004;126(14):4462–4463. doi: 10.1021/ja037273p
  • Huang Y-L, Tien H-W, Ma C-CM, et al. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly (methyl methacrylate/acrylic acid) film. Nanotechnology. 2010;21(18):185702. doi: 10.1088/0957-4484/21/18/185702
  • Huang Y-L, Tien H-W, Ma C-CM, et al. Effect of cross-linkable polymer on the morphology and properties of transparent multi-walled carbon nanotube conductive films. Appl Surf Sci. 2011;258(1):136–142. doi: 10.1016/j.apsusc.2011.08.019
  • Wu Z, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science. 2004;305(5688):1273–1276. doi: 10.1126/science.1101243
  • Wang SJ, Geng Y, Zheng Q, et al. Fabrication of highly conducting and transparent graphene films. Carbon N Y. 2010;48(6):1815–1823. doi: 10.1016/j.carbon.2010.01.027
  • Huang Y-L, Tien H-W, Ma C-CM, et al. Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. J Mater Chem. 2011;21(45):18236–18241. doi: 10.1039/c1jm13790e
  • Tien H-W, Huang Y-L, Yang S-Y, et al. Graphene nanosheets deposited on polyurethane films by self-assembly for preparing transparent, conductive films. J Mater Chem. 2011;21(38):14876–14883. doi: 10.1039/c1jm11602a
  • Gomez De Arco L, Zhang Y, Schlenker CW, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 2010;4(5):2865–2873. doi: 10.1021/nn901587x
  • Wu H, Hu L, Rowell MW, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 2010;10(10):4242–4248. doi: 10.1021/nl102725k
  • Hu L, Kim HS, Lee J-Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano. 2010;4(5):2955–2963. doi: 10.1021/nn1005232
  • Madaria AR, Kumar A, Ishikawa FN, et al. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010;3(8):564–573. doi: 10.1007/s12274-010-0017-5
  • Liu C-H, Yu X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett. 2011;6(1):75. doi: 10.1186/1556-276X-6-75
  • Hong T-K, Lee DW, Choi HJ, et al. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene nanosheets. Acs Nano. 2010;4(7):3861–3868. doi: 10.1021/nn100897g
  • Tung VC, Chen L-M, Allen MJ, et al. Low-temperature solution processing of graphene – carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009;9(5):1949–1955. doi: 10.1021/nl9001525
  • Rafiee J, Rafiee MA, Yu Z-Z, et al. Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater. 2010;22(19):2151–2154. doi: 10.1002/adma.200903696
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–907. doi: 10.1021/nl0731872
  • Cai D, Song M. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem. 2010;20(37):7906–7915. doi: 10.1039/c0jm00530d
  • Kalaitzidou K, Fukushima H, Drzal LT. Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon N Y. 2007;45(7):1446–1452. doi: 10.1016/j.carbon.2007.03.029
  • Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43(16):6515–6530. doi: 10.1021/ma100572e
  • Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphene composites. Macromolecules. 2009;42(14):5251–5255. doi: 10.1021/ma900631c
  • Fang M, Wang K, Lu H, et al. Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem. 2010;20(10):1982–1992. doi: 10.1039/b919078c
  • Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon N Y. 2009;47(3):922–925. doi: 10.1016/j.carbon.2008.12.038
  • De S, Coleman JN. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? Acs Nano. 2010;4(5):2713–2720. doi: 10.1021/nn100343f
  • Do H, Reinhard M, Vogeler H, et al. Polymeric anodes from poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) for 3.5% efficient organic solar cells. Thin Solid Films. 2009;517(20):5900–5902. doi: 10.1016/j.tsf.2009.03.212
  • Kim J, Ishihara M, Koga Y, et al. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett. 2011;98(9):091502. doi: 10.1063/1.3561747
  • Sorel S, Lyons PE, De S, et al. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter. Nanotechnology. 2012;23(18):185201. doi: 10.1088/0957-4484/23/18/185201
  • Dressel M, Gruener G. Electrodynamics of solids: optical properties of electrons in matter. Cambridge University Press, Cambridge, 2002.
  • Kholmanov IN, Magnuson CW, Aliev AE, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012;12(11):5679–5683. doi: 10.1021/nl302870x
  • Rathmell AR, Bergin SM, Hua Y-L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater. 2010;22(32):3558–3563. doi: 10.1002/adma.201000775
  • Hu L, Hecht DS, Gruner G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev. 2010;110(10):5790–5844. doi: 10.1021/cr9002962
  • Lee J-Y, Connor ST, Cui Y, et al. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008;8(2):689–692. doi: 10.1021/nl073296g
  • Li B, Ye S, Stewart IE, et al. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015;15(10):6722–6726. doi: 10.1021/acs.nanolett.5b02582
  • Sun Y. Silver nanowires–unique templates for functional nanostructures. Nanoscale. 2010;2(9):1626–1642. doi: 10.1039/c0nr00258e
  • Tien HN, Tien HN, Cuong TV, et al. Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. J Mater Chem. 2012;22(17):8649–8653. doi: 10.1039/c2jm16910j
  • Yun YS, Kim DH, Kim B, et al. Transparent conducting films based on graphene oxide/silver nanowire hybrids with high flexibility. Synth Met. 2012;162(15):1364–1368. doi: 10.1016/j.synthmet.2012.05.026
  • Liu B-T, Kuo H-L. Graphene/silver nanowire sandwich structures for transparent conductive films. Carbon N Y. 2013;63:390–396. doi: 10.1016/j.carbon.2013.06.094
  • Nirmalraj PN, Lyons PE, De S, et al. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009;9(11):3890–3895. doi: 10.1021/nl9020914
  • Choi HO, Kim DW, Kim SJ, et al. Combining the silver nanowire bridging effect with chemical doping for highly improved conductivity of CVD-grown graphene films. J Mater Chem C. 2014;2(29):5902–5909. doi: 10.1039/c4tc00606b
  • Ji Y-H, Liu Y, Li Y-Q, et al. Significantly enhanced electrical conductivity of silver nanowire/polyurethane composites via graphene oxide as novel dispersant. Compos Sci Technol. 2016;132:57–67. doi: 10.1016/j.compscitech.2016.07.002
  • Al-Attabi NY, Kaur G, Adhikari R, et al. Preparation and characterization of highly conductive polyurethane composites containing graphene and gold nanoparticles. J Mater Sci. 2017;52(19):11774–11784. doi: 10.1007/s10853-017-1335-8
  • Santerre J, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005;26(35):7457–7470. doi: 10.1016/j.biomaterials.2005.05.079
  • Ramaraj B. Electrical and mechanical properties of thermoplastic polyurethane and polytetrafluoroethylene powder composites. Polym Plast Technol Eng. 2007;46(6):575–578. doi: 10.1080/03602550701298671
  • Pike G, Seager C. Percolation and conductivity: a computer study. I. Phys Rev B. 1974;10(4):1421–1434. doi: 10.1103/PhysRevB.10.1421
  • Jeong C, Nair P, Khan M, et al. Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 2011;11(11):5020–5025. doi: 10.1021/nl203041n
  • Gunatillake PA, Meijs GF, Mccarthy SJ, et al. Poly (dimethylsiloxane)/poly (hexamethylene oxide) mixed macrodiol based polyurethane elastomers. I. Synthesis and properties. J Appl Polym Sci. 2000;76(14):2026–2040. doi: 10.1002/(SICI)1097-4628(20000628)76:14<2026::AID-APP5>3.0.CO;2-X
  • Liang H, Yu D. Novel Ag/C nanocable/epoxy resin composite. Polym Eng Sci. 2011;51(9):1757–1762. doi: 10.1002/pen.21962

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.