118
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of strain rate on self-organisation of adiabatic shear bands in steel

ORCID Icon, ORCID Icon & ORCID Icon
Pages 556-563 | Received 03 Nov 2019, Accepted 13 Jan 2020, Published online: 03 Feb 2020

References

  • Robinson JH, Nolen AM. An investigation of metal matrix composites as shields for hypervelocity orbital debris impacts. Int J Impact Eng. 1995;17(4):685–696. doi: 10.1016/0734-743X(95)99891-T
  • Meyers MA. Dynamic behavior of materials. Exp Mech. 2012;52(2):117–118. doi: 10.1007/s11340-012-9598-0
  • Yang Y, Wang BF. Dynamic recrystallization in adiabatic shear band in α-titanium. Mater Lett. 2006;60(17):2198–2202. doi: 10.1016/j.matlet.2005.12.097
  • Jiang LH, Yang Y, Wang Z, et al. Microstructure evolution within adiabatic shear band in peak aged ZK60 magnesium alloy. Mat Sci Eng A Struct. 2018;711:317–324. doi: 10.1016/j.msea.2017.10.111
  • Yang Y, Jiang F, Zhou BM, et al. Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy. Mat Sci Eng A Struct. 2011;528(6):2787–2794. doi: 10.1016/j.msea.2010.12.053
  • Yang Y, Jiang LH, Xu Z, et al. An examination of adiabatic shearing behavior in ZK60 alloy with different states of heat treatment. Mat Sci Eng A Struct. 2017;685:57–64. doi: 10.1016/j.msea.2016.12.117
  • Yang Y, Jiang LH. Effect of heat treatment on adiabatic shear susceptibility in ZK60 magnesium alloy. Mat Sci Eng A Struct. 2016;664:146–154. doi: 10.1016/j.msea.2016.04.002
  • Yang Y, Jiang LH. Self-organization of adiabatic shear bands in ZK60 magnesium alloy. Mat Sci Eng A Struct. 2016;655:321–330. doi: 10.1016/j.msea.2016.01.008
  • Yang Y, Li XM, Chen SW, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy. Mat Sci Eng A Struct. 2010;527(20):5084–5091. doi: 10.1016/j.msea.2010.04.079
  • Yang Y, Tan GY, Chen PX, et al. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy. Mat Sci Eng A Struct. 2012;546(1):279–283. doi: 10.1016/j.msea.2012.03.067
  • Yang Y, Zheng HG, Zhao ZD, et al. Effect of phase composition on self-organization of shear bands in Ti-1300 titanium alloy. Mat Sci Eng A Struct. 2011;528(25):7506–7513. doi: 10.1016/j.msea.2011.06.068
  • Yang Y, Zheng HG, Shi ZJ, et al. Effect of orientation on self-organization of shear bands in 7075 aluminum alloy. Mat Sci Eng A Struct. 2011;528(6):2446–2453. doi: 10.1016/j.msea.2010.12.050
  • Xue Q, Meyers MA, Nesterenko VF. Self organization of shear bands in stainless steel. Mat Sci Eng A Struct. 2004;384:35–46. doi: 10.1016/j.msea.2004.05.069
  • Xue Q, Nesterenko VF, Meyers MA. Evaluation of the collapsing thick-walled cylinder technique for shear-band spacing. Int J Impact Eng. 2003;28(3):257–280. doi: 10.1016/S0734-743X(02)00103-3
  • Yang Y, Jiang LH, Luo SH, et al. Effect of strain on microstructure evolution of 1Cr18Ni9Ti stainless steel during adiabatic shearing. J Mater Eng Perform. 2016;25:29–37. doi: 10.1007/s11665-015-1776-7
  • Wranglén G. An introduction to corrosion and protection of metals; 1985.
  • Pedro FN, Po-Hsun C, David JB, et al. Cavity collapse in highly heterogeneous granular mixtures with different grain size and porosity. J Appl Phys. 2019;126:024303. doi: 10.1063/1.5099142
  • Meyers MA, Wang SL. An improved method for shock consolidation of powders. Acta Metall Mater. 1998;36:925–936. doi: 10.1016/0001-6160(88)90147-2
  • Kennedy JE. Behavior and utilization of explosives in engineering design. 12th annual symposium; Albuquerque, NM; 1972. ASME.
  • Grady DE. Dissipation in adiabatic shear bands. Mech Mater. 1994;17(3):289–293. doi: 10.1016/0167-6636(94)90066-3
  • Navarro PF, Po-Hsun C, Higgins A, et al. Shear band patterning and post-critical behavior in AISI 4340 steel with different microstructure. Int J Impact Eng. 2018;112:144–154. doi: 10.1016/j.ijimpeng.2017.10.011
  • Grady DE, Kipp ME. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids. J Mech Phys Solids. 1987;35(1):95–119. doi: 10.1016/0022-5096(87)90030-5
  • Wright TW, Ockendon H. A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int J Plasticity. 1996;12(7):927–934. doi: 10.1016/S0749-6419(96)00034-4
  • Molinari A. Collective behavior and spacing of adiabatic shear bands. J Mech Phys Solids. 1997;45(9):1551–1575. doi: 10.1016/S0022-5096(97)00012-4
  • Xue Q, Meyers MA, Nesterenko VF. Self-organization of shear bands in titanium and Ti-6Al-4V alloy. Acta Mater. 2002;50:575–596. doi: 10.1016/S1359-6454(01)00356-1
  • Mercier S, Molinari A. Steady-state shear band propagation under dynamic conditions. J Mech Phys Solids. 1998;46:1463–1495. doi: 10.1016/S0022-5096(97)00069-0
  • Odeshi AG, Al-Ameeri S, Mirfakhraei S, et al. Deformation and failure mechanism in AISI 4340 steel under ballistic impact. Theor Appl Fract Mec. 2006;45(1):18–24. doi: 10.1016/j.tafmec.2005.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.