1,520
Views
19
CrossRef citations to date
0
Altmetric
Critical Assesment

Critical Assesment 37: Harmonic-structure materials - idea, status and perspectives

ORCID Icon &
Pages 517-526 | Received 18 Dec 2019, Accepted 18 Jan 2020, Published online: 29 Jan 2020

References

  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sec B. 1951;64(9):747–753.
  • Petch NJ. The cleavage strength of crystals. J Iron Steel Res Int. 1953;174:25–28.
  • Feynman RP. There's plenty of room at the bottom. Eng Sci. 1960;1:22–36.
  • Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33(4):223–315.
  • Valiev R. Materials science: nanomaterial advantage. Nature. 2002 Oct 31;419(6910):887–889.
  • Valiev RZ, Alexandrov IV, Zhu YT, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17:5–8.
  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51(4):427–556.
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013 Feb;61(3):782–817.
  • Langdon TG. Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater. 2013 Nov;61(19):7035–7059.
  • Valiev RZ, Estrin Y, Horita Z, et al. Fundamentals of superior properties in bulk NanoSPD materials. Mater Res Lett. 2015;4(1):1–21.
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM. 2016;68(4):1216–1226.
  • Vinogradov A, Estrin Y. Analytical and numerical approaches to modelling severe plastic deformation. Prog Mater Sci. 2018 Jun 1;95:172–242.
  • Mandelbrot BB. The fractal geometry of nature. New York: Henry Holt and Company; 1983.
  • Wegst UGK, Ashby MF. The mechanical efficiency of natural materials. Philos Mag. 2004 Jul 21;84(21):2167–2186.
  • Meyers MA, Chen P-Y, Lin AY-M, et al. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008;53(1):1–206.
  • Meyers MA, McKittrick J, Chen P-Y. Structural biological materials: critical mechanics-materials connections. Science. 2013 Feb 15;339(6121):773–779.
  • Wang Y, Chen M, Zhou F, et al. High tensile ductility in a nanostructured metal. Nature. 2002 Oct 31;419(6910):912–915.
  • Gil Sevillano J, Aldazabal J. Ductilization of nanocrystalline materials for structural applications. Scr Mater. 2004;51(8):795–800.
  • Zhao Y-H, Liao X-Z, Cheng S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv Mater. 2006 Sep 5;18(17):2280–2283.
  • Kimura Y, Inoue T, Yin F, et al. Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science. 2008;320(5879):1057.
  • Höppel HW, Korn M, Lapovok R, et al. Bimodal grain size distributions in UFG materials produced by SPD: their evolution and effect on mechanical properties. J Phys Conf Ser. 2010;240(1):012147.
  • Emura S, Tsuzaki K, Tsuchiya K. Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater Sci Eng A. 2010 Nov 25;528(1):355–362.
  • Zhou M. Exceptional properties by design. Science. 2013 Mar 8;339(6124):1161–1162.
  • Orlov D, Fujiwara H, Ameyama K. Obtaining copper with harmonic structure for the optimal balance of structure-performance relationship. Mater Trans. 2013;54(9):1549–1553.
  • Koseki T, Inoue J, Nambu S. Development of multilayer steels for improved combinations of high strength and high ductility. Mater Trans. 2014;55(2):227–237.
  • Wu X, Zhu Y. Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett. 2017 Nov 15;5(8):527–532.
  • Ma E, Zhu T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater Today. 2017 Jul 1;20(6):323–331.
  • Ovid'ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018 May 1;94:462–540.
  • Azizi-Alizamini H, Militzer M, Poole WJ. A novel technique for developing bimodal grain size distributions in low carbon steels. Scr Mater. 2007 Dec;57(12):1065–1068.
  • Ravi Kumar B, Raabe D. Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling. Scr Mater. 2012 May;66(9):634–637.
  • Orlov D, Todaka Y, Umemoto M, et al. Formation of bimodal grain structures in high purity Al by reversal high pressure torsion. Scr Mater. 2011 Mar;64(6):498–501.
  • Zherebtsov S, Kudryavtsev E, Kostjuchenko S, et al. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Mater Sci Eng A. 2012 Feb 28;536(0):190–196.
  • Srinivasarao B, Oh-ishi K, Ohkubo T, et al. Synthesis of high-strength bimodally grained iron by mechanical alloying and spark plasma sintering. Scr Mater. 2008 May;58(9):759–762.
  • Dirras G, Gubicza J, Ramtani S, et al. Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size. Mater Sci Eng A. 2010 Feb 15;527(4–5):1206–1214.
  • Estrin Y, Vinogradov A. Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int J Fatigue. 2010;32(6):898–907.
  • Fujiwara H, Akada R, Noro A, et al. Enhanced mechanical properties of nano/meso hybrid structure materials produced by hot roll sintering process. Mater Trans. 2008;49(1):90–96.
  • Fujiwara H, Sekiguchi T, Ameyama K. Mechanical properties of pure titanium and Ti-6Al-4V alloys with a new tailored nano/meso hybrid microstructure. Int J Mater Res. 2009;100:796–799.
  • Sekiguchi T, Ono K, Fujiwara H, et al. New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and hot roll sintering. Mater Trans. 2010;51(1):39–45.
  • Ameyama K, Fujiwara H. Creation of harmonic structure materials with outstanding mechanical properties. Mater Sci Forum. 2012;706–709:9–16.
  • Zhang Z, Rifai M, Kobayakawa H, et al. Effects of SiO2 particles on deformation of mechanically milled water-atomized SUS304L powder compacts. Mater Trans. 2012;53(1):109–115.
  • Ciuca OP, Ota M, Deng S, et al. Harmonic structure design of a SUS329J1 two phase stainless steel and its mechanical properties. Mater Trans. 2013;54(9):1629–1633.
  • Fujiwara H, Kawabata T, Miyamoto H, et al. Mechanical properties of harmonic structured composite with pure titanium and Ti-48 at%Al alloy by MM/SPS process. Mater Trans. 2013;54(9):1619–1623.
  • Yamada Y, Fujiwara H, Miyamoto H, et al. Microstructure and mechanical properties of high speed steel/carbon steel composite with harmonic structure. J Jpn Soc Powder Powder Metall. 2013 Apr;60(4):160–166.
  • Ota M, Sawai K, Kawakubo M, et al. Harmonic structure formation and deformation behavior in a (α + γ) two phase stainless steel. IOP Conf Ser Mater Sci Eng. 2014 Aug 8;63:012027.
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014 May 20;49(19):6579–6585.
  • Zhang Z, Vajpai SK, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng A. 2014 Mar 26;598:106–113.
  • Dirras G, Ota M, Tingaud D, et al. Microstructure evolution during direct impact loading of commercial purity α-titanium with harmonic structure design. Matér Tech. 2015;103(3):311.
  • Kikuchi S, Imai T, Kubozono H, et al. Evaluation of near-threshold fatigue crack propagation in Ti-6Al-4V alloy with harmonic structure created by mechanical milling and spark plasma sintering. Frattura ed Integrità Strutturale. 2015;9(34):545–553.
  • Kikuchi S, Takemura K, Hayami Y, et al. Evaluation of the fatigue properties of Ti-6Al-4V alloy with harmonic structure in 4-Points bending. J Soc Mater Sci Jpn. 2015;64(11):880–886.
  • Ota M, Vajpai SK, Imao R, et al. Application of high pressure Gas Jet Mill Process to Fabricate high performance harmonic structure Designed pure titanium. Mater Trans. 2015;56(1):154–159.
  • Vajpai SK, Ota M, Watanabe T, et al. The development of high performance Ti-6Al-4V alloy via a unique Microstructural design with bimodal grain size distribution. Metallurg Mater Trans A. 2015 Feb 1;46(2):903–914.
  • Vajpai SK, Sawangrat C, Yamaguchi O, et al. Deformation mechanism of harmonic structure designed Co–Cr–Mo alloy. Adv Mater Process Technol. 2015 Oct 2;1(3–4):610–618.
  • Zhang Z, Orlov D, Vajpai SK, et al. Importance of bimodal structure topology in the control of mechanical properties of a stainless steel. Adv Eng Mater. 2015;17(6):791–795.
  • Khalil NZ, Vajpai SK, Ota M, et al. Application of Al-Si Semi-solid Reaction for fabricating harmonic structured Al based alloy. Mater Trans. 2016;57(9):1433–1439.
  • Kikuchi S, Imai T, Kubozono H, et al. Effect of harmonic structure design with bimodal grain size distribution on near-threshold fatigue crack propagation in Ti–6Al–4 V alloy. Int J Fatigue. 2016 Nov 1;92:616–622.
  • Rai PK, Shekhar S, Nakatani M, et al. Effect of harmonic microstructure on the corrosion behavior of SUS304L austenitic stainless steel. Metallurg Mater Trans A. 2016;47(12):6259–6269.
  • Vajpai SK, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials. Mater Res Lett. 2016 Oct 1;4(4):191–197.
  • Vajpai SK, Sawangrat C, Yamaguchi O, et al. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy. Mater Sci Eng C. 2016 Jan 1;58:1008–1015.
  • Zheng R, Zhang Z, Nakatani M, et al. Enhanced ductility in harmonic structure designed SUS316L produced by high energy ball milling and hot isostatic sintering. Mater Sci Eng A. 2016 Sep 30;674:212–220.
  • Amokrane G, Hocini A, Ameyama K, et al. Functionalization of new biocompatible titanium alloys with harmonic structure design by using UV irradiation. IRBM. 2017 Aug 1;38(4):190–197.
  • Dirras G, Tingaud D, Ueda D, et al. Dynamic Hall-Petch versus grain-size gradient effects on the mechanical behavior under simple shear loading of β-titanium Ti-25Nb-25Zr alloys. Mater Lett. 2017 Nov 1;206:214–216.
  • Dirras G, Ueda D, Hocini A, et al. Cyclic shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: back-stress hardening and twinning inhibition. Scr Mater. 2017 Sep 1;138:44–47.
  • Nakatani M, Fujiki Y, Ota M, et al. High temperature mechanical properties of harmonic structure designed SUS304L austenitic stainless steel. Mater Sci Forum. 2017;879:2507–2511.
  • Rai PK, Shekhar S, Nakatani M, et al. Wear behavior of harmonic structured 304L stainless steel. J Mater Eng Perform. 2017 Jun 1;26(6):2608–2618.
  • Zhang Z, Ma H, Zheng R, et al. Fatigue behavior of a harmonic structure designed austenitic stainless steel under uniaxial stress loading. Mater Sci Eng A. 2017 Nov 7;707(Suppl. C):287–294.
  • Kikuchi S, Akebono H, Ueno A, et al. Formation of commercially pure titanium with a bimodal nitrogen diffusion phase using plasma nitriding and spark plasma sintering. Powder Technol. 2018 May 1;330:349–356.
  • Kikuchi S, Kubozono H, Nukui Y, et al. Statistical fatigue properties and small fatigue crack propagation in bimodal harmonic structured Ti-6Al-4V alloy under four-point bending. Mater Sci Eng A. 2018 Jan 10;711:29–36.
  • Li G, Morinaka S, Kawabata M, et al. Improvement of strength with maintaining ductility of harmonic structure pure copper by cold rolling and annealing process. Procedia Manuf. 2018 Jan 1;15:1641–1648.
  • Nukui Y, Kubozono H, Kikuchi S, et al. Fractographic analysis of fatigue crack initiation and propagation in CP titanium with a bimodal harmonic structure. Mater Sci Eng A. 2018 Feb 14;716:228–234.
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018 May 4;6(5):261–267.
  • Sharma B, Vajpai SK, Ameyama K. An efficient powder metallurgy processing route to prepare high-performance β-Ti–Nb alloys using pure titanium and titanium hydride powders. Metals (Basel). 2018;8(7):516.
  • Kikuchi S, Nakatsuka Y, Nakai Y, et al. Evaluation of fatigue properties under four-point bending and fatigue crack propagation in austenitic stainless steel with a bimodal harmonic structure. Frattura Integr Strutt. 2019 Mar 7;13(48).
  • Nagata M, Horikawa N, Kawabata M, et al. Effects of microstructure on mechanical properties of harmonic structure Designed pure Ni. Mater Trans. 2019;60(9):1914–1920.
  • Orlov D, Zhou J, Hall S, et al. Advantages of architectured harmonic structure in structural performance. IOP Conf Ser Mater Sci Eng. 2019;580(012019):265–272.
  • Rai PK, Shekhar S, Yagi K, et al. Corrosion behavior of harmonic structured 316L stainless steel in 3.5% NaCl and simulated body fluid Solution. J Mater Eng Perform. 2019;28(12):7554–7564.
  • Rai PK, Shekhar S, Yagi K, et al. Fretting wear mechanism for harmonic, non-harmonic and conventional 316L stainless steels. Wear. 2019 Apr 15;424–425:23–32.
  • Zheng R, Li G, Zhang Z, et al. Manipulating the powder size to achieve enhanced strength and ductility in harmonic structured Al alloy. Mater Res Lett. 2019 Jun 3;7(6):217–224.
  • Zhou G, Ma H, Zhang Z, et al. Fatigue crack growth behavior in a harmonic structure designed austenitic stainless steel. Mater Sci Eng A. 2019 Jun 5;758:121–129.
  • Yu H, Watanabe I, Ameyama K. Deformation behavior analysis of harmonic structure materials by multi-scale finite element analysis. Adv Mat Res. 2015;1088:853–857.
  • Ibishi B. Finite-element simulations of harmonic structured materials [Manuscript]. Lund: Lund University; 2016.
  • Liu J, Li J, Dirras G, et al. A three-dimensional multi-scale polycrystalline plasticity model coupled with damage for pure Ti with harmonic structure design. Int J Plast. 2018 Jan 1;100:192–207.
  • Wang X, Cazes F, Li J, et al. A 3D crystal plasticity model of monotonic and cyclic simple shear deformation for commercial-purity polycrystalline Ti with a harmonic structure. Mech Mater. 2019 Jan 1;128:117–128.
  • Huang Y, Prangnell PB. The effect of cryogenic temperature and change in deformation mode on the limiting grain size in a severely deformed dilute aluminium alloy. Acta Mater. 2008;56(7):1619–1632.
  • Rathmayr GB, Pippan R. Influence of impurities and deformation temperature on the saturation microstructure and ductility of HPT-deformed nickel. Acta Mater. 2011 Nov;59(19):7228–7240.
  • Orlov D, Kamikawa N, Tsuji N. High pressure torsion to refine grains in pure aluminum up to saturation: mechanisms of structure evolution and their dependence on strain. Philos Mag. 2012 Jun 21;92(18):2329–2350.
  • Guo X, Yang G, Weng GJ. The saturation state of strength and ductility of bimodal nanostructured metals. Mater Lett. 2016 Jul 15;175:131–134.
  • Iwakuma T, Koyama S. An estimate of average elastic moduli of composites and polycrystals. Mech Mater. 2005 Apr 1;37(4):459–472.
  • Watanabe I, Nakamura G, Yuge K, et al. Maximization of strengthening effect of microscopic morphology in duplex steels. In: Altenbach H, Matsuda T, Okumura D, editor. From creep damage mechanics to Homogenization methods: a liber Amicorum to celebrate the birthday of Nobutada Ohno. Cham: Springer International Publishing; 2015. p. 541–555.