165
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Surface mechanical attrition treatment-induced dissolution of Cu4Ti precipitates in Cu–4wt-%Ti alloy

, , , , &
Pages 661-667 | Received 17 Sep 2019, Accepted 03 Feb 2020, Published online: 13 Feb 2020

References

  • Bachmaier A, Schmauch J, Aboulfadl H, et al. On the process of co-deformation and phase dissolution in a hard-soft immiscible Cu-Co alloy system during high-pressure torsion deformation. Acta Mater. 2016;115:333–346. doi: 10.1016/j.actamat.2016.06.010
  • Sauvage X, Chbihi A, Quelennec X. Severe plastic deformation and phase transformations. J Phys Conf Ser. 2010;240(1):1–8.
  • Edalati K, Uehiro R, Fujiwara K, et al. Ultra-severe plastic deformation: evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems. Mater Sci Eng A. 2017;701:158–166. doi: 10.1016/j.msea.2017.06.076
  • Zhang HW, Ohsaki S, Mitao S, et al. Microstructural investigation of white etching layer on pearlite steel rail. Mater Sci Eng A. 2006;421(1):191–199. doi: 10.1016/j.msea.2006.01.033
  • Taniyama A, Takayama T, Arai M, et al. Structure analysis of ferrite in deformed pearlitic steel by means of X-ray diffraction method with synchrotron radiation. Scr Mater. 2004;51(1):53–58. doi: 10.1016/j.scriptamat.2004.03.018
  • Teplov VA, Pilugin VP, Gaviko VS, et al. Non-equilibrium solid solution and nanocrystal structure of Fe–Cu alloy after plastic deformation under pressure. Philos Mag Part B. 1993;68(68):877–881. doi: 10.1080/13642819308217944
  • Stolyarov VV, Lapovok R, Brodova IG, et al. Ultrafine-grained Al–5 wt. % Fe alloy processed by ECAP with backpressure. Mater Sci Eng A. 2003;357(1):159–167. doi: 10.1016/S0921-5093(03)00215-6
  • Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe composite. Acta Mater. 2005;53(7):2127–2135. doi: 10.1016/j.actamat.2005.01.024
  • Straumal BB, Baretzky B, Mazilkin AA, et al. Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 2004;52(15):4469–4478. doi: 10.1016/j.actamat.2004.06.006
  • Mazilkin AA, Straumal BB, Rabkin E, et al. Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater. 2006;54(15):3933–3939. doi: 10.1016/j.actamat.2006.04.025
  • Straumal BB, Mazilkin AA, Rabkin E, et al. Deformation-driven formation of equilibrium phases in the Cu–Ni alloys. J Mater Sci. 2012;47(1):360–367. doi: 10.1007/s10853-011-5805-0
  • Sauvage X, Pippan R. Nanoscaled structure of a Cu–Fe composite processed by high-pressure torsion. Mater Sci Eng A. 2005;410(12):345–347. doi: 10.1016/j.msea.2005.08.122
  • Sauvage X, Genevois C, Costa GD, et al. Atomic scale characterization of deformation-induced interfacial mixing in a Cu/V nanocomposite wire. Scr Mater. 2009;61(6):660–663. doi: 10.1016/j.scriptamat.2009.06.007
  • Korznikov AV, Tram G, Dimitrov O, et al. The mechanism of nanocrystalline structure formation in NiAl during severe plastic deformation. Acta Mater. 2001;49(4):663–671. doi: 10.1016/S1359-6454(00)00345-1
  • Rentenberger C, Karnthaler HP. Extensive disordering in long-range-ordered CuAu induced by severe plastic deformation studied by transmission electron microscopy. Acta Mater. 2008;56(11):2526–2530. doi: 10.1016/j.actamat.2008.01.035
  • Hono K, Ohnuma M, Murayama M, et al. Cementite decomposition in heavily drawn pearlite steel wire. Scr Mater. 2001;44(6):977–983. doi: 10.1016/S1359-6462(00)00690-4
  • Cepeda-Jiménez CM, García-Infanta JM, Zhilyaev AP, et al. Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al–7wt% Si casting alloy deformed by high-pressure torsion. J. Alloy Compound. 2011;509(3):636–643. doi: 10.1016/j.jallcom.2010.09.122
  • Ivanisenko Y, Maclaren I, Sauvage X, et al. Shear-induced α → γ transformation in nanoscale Fe–C composite. Acta Mater. 2006;54(6):1659–1669. doi: 10.1016/j.actamat.2005.11.034
  • Sergueeva AV, Song C, Valiev RZ, et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater Sci Eng A. 2003;339(1):159–165. doi: 10.1016/S0921-5093(02)00122-3
  • Sauvage X, Renaud L, Deconihout B, et al. Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 2001;49(3):389–394. doi: 10.1016/S1359-6454(00)00338-4
  • Glezer AM, Plotnikova MP, Shalimova AV, et al. Severe plastic deformation of amorphous alloys: I. structure and mechanical properties. Bull Russ Acad Sci Phys. 2009;73(9):1233–1239. doi: 10.3103/S1062873809090123
  • Kovács Z, Henits P, Zhilyaev AP, et al. Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr Mater. 2006;54(10):1733–1737. doi: 10.1016/j.scriptamat.2006.02.004
  • Ohsaki S, Kato S, Tsuji N, et al. Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater. 2007;55(8):2885–2895. doi: 10.1016/j.actamat.2006.12.027
  • Fan JT, Chen AY, Fu MW, et al. A novel structural gradient metallic glass composite with enhanced mechanical properties. Scr Mater. 2009;61(6):608–611. doi: 10.1016/j.scriptamat.2009.05.046
  • Huang W, Liu Z, Xia L, et al. Severe plastic deformation-induced dissolution of θ” particles in Al–Cu binary alloy and subsequent nature aging behavior. Mater Sci Eng A. 2012;556:801–806. doi: 10.1016/j.msea.2012.07.070
  • Fernee H, Nairn J, Atrens A. Quaternary Cu-0.7%Cr-0.3%Fe-X alloys. J Mater Sci. 2001;36(19):4763–4777. doi: 10.1023/A:1017991408193
  • Korznikov AV, Ivanisenko YV, Laptionok DV, et al. Influence of severe plastic deformation on structure and phase composition of carbon steel. Nanostruct Mater. 1994;4(2):159–167. doi: 10.1016/0965-9773(94)90075-2
  • Murayama M, Horita Z, Hono K. Microstructure of two-phase Al–1.7 at% Cu alloy deformed by equal-channel angular pressing. Acta Mater. 2001;49(1):21–29. doi: 10.1016/S1359-6454(00)00308-6
  • Liu Z, Xu C, Han X, et al. The dissolution behavior of θ′ phase in Al–Cu binary alloy during equal channel angular pressing and multi-axial compression. Mater Sci Eng A. 2010;527(16):4300–4305. doi: 10.1016/j.msea.2010.03.046
  • Straumal BB, Kilmametov AR, Korneva A, et al. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloy Compound. 2016;707:20–26. doi: 10.1016/j.jallcom.2016.12.057
  • Straumal BB, Kilmametov AR, Ivanisenko Y, et al. Phase transitions during high pressure torsion of Cu-Co alloys. Mater Lett. 2014;118(3):111–114. doi: 10.1016/j.matlet.2013.12.042
  • Korneva A, Straumal B, Kilmametov A, et al. Phase transformations in a Cu-Cr alloy induced by high pressure torsion. Mater Charact. 2016;114:151–156. doi: 10.1016/j.matchar.2016.02.017
  • Straumal BB, Pontikis V, Kilmametov AR, et al. Competition between precipitation and dissolution in Cu–Ag alloys under high pressure torsion. Acta Mater. 2017;122:60–71. doi: 10.1016/j.actamat.2016.09.024
  • Straumal BB, Kilmametov AR, Mazilkin AA, et al. Transformations of Cu(in) supersaturated solid solutions under high-pressure torsion. Mater Lett. 2015;138:255–258. doi: 10.1016/j.matlet.2014.10.009
  • Sun SH, Yin F, Liu YF, et al. Deformation-induced dissolution of copper precipitation in 1.5wt%Cu-bearing antibacterial Fe-17wt%Cr alloy during plastic deformation process. Mater Des. 2018;157:469–477. doi: 10.1016/j.matdes.2018.08.014
  • Soffa WA, Laughlin DE. High-strength age hardening copper–titanium alloys: redivivus. Prog Mater Sci. 2004;49(3):347–366. doi: 10.1016/S0079-6425(03)00029-X
  • Wei H, Wei YH, Hou LF, et al. Correlation of ageing precipitates with the corrosion behaviour of Cu-4 wt.% Ti alloys in 3.5 wt.% NaCl solution. Corros Sci. 2016;111:382–390. doi: 10.1016/j.corsci.2016.05.029
  • Hou LF, Wei YH, Liu BS, et al. Microstructure evolution of AZ91D induced by high energy shot peening. Trans Nonferr Metal Soc China. 2008;18(5):0–1057. doi: 10.1016/S1003-6326(08)60180-6
  • Tao NR, Sui ML, Lu J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct Mater. 1999;11(4):433–440. doi: 10.1016/S0965-9773(99)00324-4
  • Wei H, Cui YC, Cui HQ, et al. Evolution of grain refinement mechanism in Cu-4wt.%Ti alloy during surface mechanical attrition treatment. J Alloys Compd. 2018;763:835–843. doi: 10.1016/j.jallcom.2018.06.043
  • Li Y, Li C, Wu Y, et al. Microstructural evolution and phase transformation of Ni3Al-based superalloys after thermal exposure. Vacuum. 2020;171:1–7.
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39(1):1–157. doi: 10.1016/0079-6425(94)00007-7
  • Fernee H, Nairn J, Atrens A. Precipitation hardening of Cu-Fe-Cr alloys part I mechanical and electrical properties. J Mater Sci. 2001;36(11):2711–2719. doi: 10.1023/A:1017916930459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.