246
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Non-isothermal β grain growth behaviour of pure titanium under laser quenching

, , , , &
Pages 668-673 | Received 21 Aug 2019, Accepted 10 Feb 2020, Published online: 20 Feb 2020

References

  • Badkar DS. Experimental investigation on hardness properties of laser hardened bead profile of commercially pure titanium grade3 using Nd:YAG laser. J Adv Manuf Syst. 2018;17(3):291–316. doi: 10.1142/S021968671850018X
  • Zhou J, Liao C, Shen H, et al. Surface and property characterization of laser polished Ti6Al4 V. Surf Coat Technol. 2019;380:125016. doi: 10.1016/j.surfcoat.2019.125016
  • Katahira K, Tanida Y, Takesue S, et al. Rapid surface nitriding of titanium alloy by a nanosecond fiber laser under atmospheric conditions. CIRP Ann. 2018;67(1):563–566. doi: 10.1016/j.cirp.2018.04.006
  • Li W, Yu H, Chen C, et al. Micro-structures of hard coatings deposited on titanium alloys by laser alloying technique. Surf Rev Lett. 2013;20(1):1350007 (6 pages). doi: 10.1142/S0218625X13500078
  • Zheng Y, Hu Q, Li C, et al. A novel laser surface compositing by selective laser quenching to enhance railway service life. Tribol Int. 2017;106:46–54. doi: 10.1016/j.triboint.2016.09.020
  • Lesyk DA, Martinez S, Dzhemelinskyy VV, et al. Surface microrelief and hardness of laser hardened and ultrasonically peened AISI D2 tool steel. Surf Coat Technol. 2015;278:108–120. doi: 10.1016/j.surfcoat.2015.07.049
  • Mishra S, DebRoy T. Non-isothermal grain growth in metals and alloys. Mater Sci Technol. 2006;22(3):253–278. doi: 10.1179/174328406X84094
  • Gil FJ, Planell JA. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Mater Sci Eng: A. 2000;283(1):17–24. doi: 10.1016/S0921-5093(00)00731-0
  • Orazi L, Fortunato A, Cuccolini G, et al. An efficient model for laser surface hardening of hypo-eutectoid steels. Appl Surf Sci. 2010;256(6):1913–1919. doi: 10.1016/j.apsusc.2009.10.037
  • Dai Z, Pan S, Wang M, et al. Improving the fretting wear resistance of titanium alloy by laser beam quenching. Wear. 1997;213(1-2):135–139. doi: 10.1016/S0043-1648(97)00160-9
  • Li Y, Gu D. Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Addit Manufact. 2014;1-4:99–109. doi: 10.1016/j.addma.2014.09.001
  • Hche D, Rapin G, Schaaf P. FEM simulation of the laser plasma interaction during laser nitriding of titanium. Appl Surf Sci. 2007;254(4):888–892. doi: 10.1016/j.apsusc.2007.08.079
  • Casalino G, Mortello M. A FEM model to study the fiber laser welding of Ti6Al4 V thin sheets. Int J Adv Manuf Technol. 2016;86(5-8):1339–1346. doi: 10.1007/s00170-015-8298-1
  • Dong L, Correia JPM, Barth N, et al. Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering. Addit Manuf. 2017;13:37–48. doi: 10.1016/j.addma.2016.11.002
  • Zong X, Li Z, Li J, et al. High strain rate response of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy fabricated by laser additive manufacturing. J Alloys Compd. 2019;781:47–55. doi: 10.1016/j.jallcom.2018.11.312
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metall Trans B. 1984;15(2):299–305. doi: 10.1007/BF02667333
  • Shinbine A, Garcin T, Sinclair C. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium. Mater Charact. 2016;117:57–64. doi: 10.1016/j.matchar.2016.04.018
  • Wang SC, Aindow M, Starink MJ. Effect of self-accommodation on α/α boundary populations in pure titanium. Acta Mater. 2003;51(9):2485–2503. doi: 10.1016/S1359-6454(03)00035-1
  • Ashby MF, Easterling KE. A first report on diagrams for grain growth in welds. Acta Metall. 1982;30(11):1969–1978. doi: 10.1016/0001-6160(82)90100-6
  • Oh MS, Lee J-Y, Park JK. Continuous cooling beta-to-alpha transformation behaviors of extra-pure and commercially pure Ti. Metall Mater Trans A. 2004;35(10):3071–3077. doi: 10.1007/s11661-004-0052-5
  • Ion JC, Easterling KE, Ashby MF. A second report on diagrams of microstructure and hardness for heat-affected zones in welds. Acta Metall. 1984;32(11):1949–1962. doi: 10.1016/0001-6160(84)90176-7
  • Semiatin SL, Fagin PN, Glavicic MG, et al. Influence on texture on beta grain growth during continuous annealing of Ti–6Al–4 V. Mater Sci Eng: A. 2001;299:225–234. doi: 10.1016/S0921-5093(00)01371-X
  • Seward GGE, Celotto S, Prior DJ, et al. In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Mater. 2004;52(4):821–832. doi: 10.1016/j.actamat.2003.10.049
  • Ma Y, Liu J, Lei H, et al. Beta-grain growth and influence of its grain size on damage-tolerance property in titanium alloy. Rare Met Mater Eng. 2009;6:976–981.
  • Wang T, Guo H, Tan L, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys. Mater Sci Eng: A. 2011;528(21):6375–6380. doi: 10.1016/j.msea.2011.05.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.