234
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Reaction kinetics of Cu–Ni and B4C in Cu–Ni alloy under solid-state sintering

, , , , &
Pages 759-764 | Received 31 Oct 2019, Accepted 01 Mar 2020, Published online: 16 Mar 2020

References

  • Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater. 2015;27:4744–4751. doi: 10.1002/adma.201500917
  • Zhan ZQ, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu–Cr alloy. J Alloys Comp. 2018;752:191–197. doi: 10.1016/j.jallcom.2018.04.159
  • Jha P, Gautam RK, Tyagi R, et al. Friction and wear behavior of Cu–4wt.%Ni–TiC composites under dry sliding conditions. Friction. 2017;5(4):437–446. doi: 10.1007/s40544-017-0157-7
  • Prabhu TR, Varma VK, Vedantam S. Tribological and mechanical behavior of multilayer Cu/SiC + Cr hybrid composites for brake friction material applications. Wear. 2014;317:201–212. doi: 10.1016/j.wear.2014.06.006
  • Wang CC, Lin HJ, Zhang ZG, et al. Fabrication, interfacial characteristics and strengthening mechanisms of ZrB2 microparticles reinforced Cu composites prepared by hot-pressed sintering. J Alloys Comp. 2018;748:546–552. doi: 10.1016/j.jallcom.2018.03.169
  • Yu ZL, Zhu HG, Huang JW, et al. Processing and characterization of in-situ ultrafine TiB2–Cu composites from Ti–B–Cu system. Powder Technol. 2017;320:66–72. doi: 10.1016/j.powtec.2017.07.036
  • Zhang ZQ, Shen P, Jiang QC, et al. Differential thermal analysis (DTA) on the reaction mechanism in Fe–Ti–B4C system. J Alloys Comp. 2008;463:498–502. doi: 10.1016/j.jallcom.2007.09.056
  • Zhao Q, Liang YH, Zhang ZH, et al. Effect of Al content on impact resistance behavior of Al–Ti–B4C composite fabricated under air atmosphere. Micron. 2016;91:11–21. doi: 10.1016/j.micron.2016.09.004
  • Zou BL, Xu JY, Wang Y, et al. Self-propagating high-temperature synthesis of TiC–TiB2-based Co cermets from a Co–Ti–B4C system and fabrication of coatings using the cermet powder. Chem Eng J. 2013;233:138–148. doi: 10.1016/j.cej.2013.07.125
  • Qiu F, Chu JG, Hu W, et al. Study of effect of Zr addition on the microstructures and mechanical properties of (TiCx–TiB2)/Cu composites by combustion synthesis and hot press consolidation in Cu–Ti–B4C–Zr system. Mater Res Bull; 2015;70:167–172. doi: 10.1016/j.materresbull.2015.04.039
  • Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. J Alloys Comp. 2006;417:116–120. doi: 10.1016/j.jallcom.2005.09.037
  • Feng X, Bai YJ, Lu B, et al. Synthesis of nanocrystalline Ni2B via a solvo-thermal route. Inorg Chem Commun. 2004;7:189–191. doi: 10.1016/j.inoche.2003.11.003
  • Mukhopadhyay A, Barman TK, Sahoo P. Effect of heat treatment on the characteristics of electroless Ni–B, Ni–B–W and Ni–B–Mo coatings. Mater Today Proc. 2018;5:3306–3315. doi: 10.1016/j.matpr.2017.11.573
  • Cao XY, Wang XX, Cui L, et al. Strongly coupled nickel boride/graphene hybrid as a novel electrode materials for supercapacitors. Chem Eng J. 2017;327:1085–1092. doi: 10.1016/j.cej.2017.07.010
  • Zhao TK, She SF, Ji XL, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials. J Alloys Comp. 2017;708:500–507. doi: 10.1016/j.jallcom.2017.03.019
  • Cheng Y, Tanaka M, Watanabe T, et al. Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J Phys Conf Ser. 2014;518:012026. doi: 10.1088/1742-6596/518/1/012026
  • Jia L, Wang XS, Chen B, et al. Microstructural evolution and competitive reaction behavior of Ti–B4C system under solid-state sintering. J Alloys Comp. 2016;687:1004–1011. doi: 10.1016/j.jallcom.2016.06.280
  • Liu MJ, Wang Z, Wu JY, et al. Ti/Al2O3 interfacial diffusion: kinetic equation for growth of reaction layer and formation mechanism. J Alloys Comp. 2015;652:260–265. doi: 10.1016/j.jallcom.2015.08.147
  • Xu L, Cui YY, Hao YL, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater Sci Eng A. 2006;435-436:638–647. doi: 10.1016/j.msea.2006.07.077
  • Li HY, Wang XF, Wei DD, et al. A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel. Mater Sci Eng A. 2012;536:216–222. doi: 10.1016/j.msea.2011.12.108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.