1,453
Views
1
CrossRef citations to date
0
Altmetric
Short Communications

On coarsening of cementite during tempering of martensitic steels

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 887-893 | Received 30 Dec 2019, Accepted 04 Mar 2020, Published online: 24 Mar 2020

References

  • Olson GB. The strength of ferrous martensite. In: Cohen M, Olson GB, Owen WS, editors. Martensite. Materials Park (OH): ASM International; 1992. p. 263–269.
  • Gladman T. Principles of microstructural stability in creep resistant alloys. In: Microstructural stability of creep resistant alloys for high temperature plant applications. Institute of Materials (London, England). London: IOM Communications; 1998. p. 1950–1968.
  • Barrow ATW, Kang J H, Rivera-Díaz-del-Castillo PEJ. The ϵ→η→θ transition in 100Cr6 and its effect on mechanical properties. Acta Mater. 2012;60:2805–2815. doi: 10.1016/j.actamat.2012.01.046
  • Vedula KM, Heckel RW. Spheroidization of binary Fe–C alloys over a range of temperatures. Metall Trans. 1970;1(1):9–18.
  • Lindsley BA, Marder AR. The morphology and coarsening kinetics of spheroidzed Fe–C binary alloys. Acta Mater. 1998;46(7):341–351.
  • Hillert M. Paraequilibrium. Internal Report, Swedish Institute for Metal Research, Stockholm, 1953.  In: Ågren J, Bréchet Y, Hutchinson C, et al. editors. Thermodynamics and phase transformations, the selected works of Hillert M .Les Ulis, Cedex (France): EPD Science; 2006. p. 9–24.
  • Björklund S, Donaghey LF, Hillert M. The effect of alloying elements on the rate of Ostwald ripening of cementite in steel. Acta Metall. 1972;20(7):867–874. doi: 10.1016/0001-6160(72)90079-X
  • Mukherjee T, Stumpf WE, Sellars CM, et al. Kinetics of coarsening of carbides in Chromium steels at 700 °C. J Iron Steel Inst. 1969;207:621–631.
  • Nam WJ, Bae CM. Coarsening behavior of cementite particles at a subcritical temperature in a medium carbon steel. Scr Mater. 1999;41(3):313–318. doi: 10.1016/S1359-6462(99)00168-2
  • Sakuma T, Watanabe N, Nishizawa T. The effect of alloying element on the coarsening behaviour of cementite particles in ferrite. Trans Jpn Inst Met. 1980;21:159–168. doi: 10.2320/matertrans1960.21.159
  • Ghosh G, Olson GB, Campbell CE. An analytical electron microscopy study of paraequilibrium cementite precipitation in ultra-high-strength steel. Metall Mater Trans A. 1999;30(3):501–512. doi: 10.1007/s11661-999-0042-8
  • Miyamoto G, Oh JC, Hono K, et al. Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater. 2007;55(15):5027–5038. doi: 10.1016/j.actamat.2007.05.023
  • Lv ZQ, Sun SH, Wang ZH, et al. Effect of alloying elements addition on coarsening behavior of pearlitic cementite particles after severe cold rolling and annealing. Mater Sci Eng A. 2008;489:107–112. doi: 10.1016/j.msea.2007.12.005
  • Song W, Choi PP, Inden G, et al. On the spheroidized carbide dissolution and elemental partitioning in high carbon bearing steel 100Cr6. Metall Mater Trans A. 2014;45(2):595–606. doi: 10.1007/s11661-013-2048-5
  • Zamberger S, Whitmore L, Krisam S, et al. Experimental and computational study of cementite precipitation in tempered martensite. Model Simul Mater Sci Eng. 2015;23(5):23055012. doi: 10.1088/0965-0393/23/5/055012
  • Deb P, Chaturvedi MC. Coarsening behavior of cementite particles in a ferrite matrix in 10B30 steel. Metallography. 1982;15:341–354. doi: 10.1016/0026-0800(82)90026-X
  • Di Nunzio PE. A theoretical interpretation of self-similar right-skewed particle size distributions in Ostwald ripening of cementite in ferrite. Philos Mag. 2018;98(5):388–407. doi: 10.1080/14786435.2017.1407880
  • Martin JW, Doherty RD. Stability of microstructure in metallic systems: Cambridge solid state science series. Cambridge (UK): Cambridge University Press; 1976.
  • Inden G, et al. Kinetics of phase transformations in multi-component systems. In: Ghetta V, Gorse D, Mazière D, editors. Materials issues for generation IV systems. Heidelberg: Springer; 2008. p. 113–140. (NATO Science for Peace and Security Series).
  • Hou ZY, Hedström P, Xu YB, et al. Microstructure of martensite in Fe–C–Cr and its implications for modelling of carbide precipitation during tempering. ISIJ Int. 2014;54(11):2649–2656. doi: 10.2355/isijinternational.54.2649
  • Hou ZY, Hedström P, Xu YB, et al. Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe–0.16 wt%C–4.0 wt% Cr alloy. Calphad. 2016;53:39–48. doi: 10.1016/j.calphad.2016.03.001
  • Li YJ, Choi P, Goto S, et al. Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire. Acta Mater. 2012;60(9):4005–4016. doi: 10.1016/j.actamat.2012.03.006
  • Gault B, Moody MP, Cairney JM, et al. Atom probe microscopy. New York: Springer Science & Business Media; 2012.
  • Zhou T, Babu RP, Hou ZY, et al. Precipitation of multiple carbides in martensitic CrMoV steels – experimental analysis and exploration of alloying strategy through thermodynamic calculations. Materialia. 2020;9:100630. doi: 10.1016/j.mtla.2020.100630
  • Kozeschnik E. Modelling solid-state precipitation. New York (NY): Momentum Press, LLC; 2013; p. 38, 76–93, 351.
  • Lifshitz IM, Slyosov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1–2):35–50. doi: 10.1016/0022-3697(61)90054-3
  • Robson JD. Modelling the overlap of nucleation, growth and coarsening during precipitation. Acta Mater. 2004;52:4669–4676. doi: 10.1016/j.actamat.2004.06.024
  • Coates DE. Diffusional growth limitation and hardenability. Metall Trans. 1973;4(10):2313–2325. doi: 10.1007/BF02669370
  • Oriani RA. Ostwald ripening of precipitates in solid matrices. Acta Metall. 1964;12:1399–1409. doi: 10.1016/0001-6160(64)90128-2
  • Li CY, Blakely JM, Feingold AH. Mass transport analysis for Ostwald ripening and related phenomena. Acta Metall. 1966;14:1397–1402. doi: 10.1016/0001-6160(66)90159-3
  • Wagner CZ. Theory of precipitate change by redissolution. Z Electrochem. 1961;65:581–591.
  • Voorhees PW. The theory of Ostwald ripening. J Stat Phys. 1985;38(1–2):231–252. doi: 10.1007/BF01017860
  • Jayanth CS, Nash P. Review factors affecting particle-coarsening kinetics and size distribution. J Mater Sci. 1989;24(9):3041–3052. doi: 10.1007/BF01139016
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15:30–36. doi: 10.1179/026708399773002782
  • Fragomeni JM, Hillberry BM. A micromechanical method for predicting the precipitation hardening response of particle strengthened alloys hardened by ordered precipitates. Acta Mech. 1999;138:185–210. doi: 10.1007/BF01291844
  • Kulkarni AJ, Krishnamurthy K, Deshmukh SP, et al. Effect of particle size distribution on strength of precipitation-hardened alloys. J Mater Res. 2004;19(9):2765–2773. doi: 10.1557/JMR.2004.0364
  • Thermo-Calc Software TCFE Steels/Fe–alloys database version 8 (accessed 23 July 2017).
  • Thermo-Calc Software TCFE Steels /MOBFE 3 (accessed 30 August 2017).
  • Hou ZY, Babu P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel. J Mater Sci. 2019;54(12):9222–9234. doi: 10.1007/s10853-019-03530-8
  • The Diffusion Module (DICTRA) user guide. (2017). (accessed 30 August 2017).
  • Wang JS, Mulholland MD, Olson GB, et al. Prediction of the yield strength of a secondary-hardening steel. Acta Mater. 2013;61(13):4939–4952. doi: 10.1016/j.actamat.2013.04.052
  • Allen TR, Gan J, Cole JI, et al. Radiation response of a 9 Chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater. 2008;375:26–37. doi: 10.1016/j.jnucmat.2007.11.001
  • Chen MK, Voorhees PW. The dynamics of transient Ostwald ripening. Model Simul Sci Eng Technol. 1993;1:591–612. doi: 10.1088/0965-0393/1/5/002
  • Li JJ, Guo CW, Ma Y, et al. Effect of initial particle size distribution on the dynamics of transient Ostwald ripening: a phase field study. Acta Mater. 2015;90:10–26. doi: 10.1016/j.actamat.2015.02.030
  • Snyder VA, Alkemper J, Voorhees PW. Transient Ostwald ripening and the disagreement between steady-state theory and experiment. Acta Mater. 2001;49:699–709. doi: 10.1016/S1359-6454(00)00342-6
  • Brown LC. A new examination of classical coarsening theory. Acta Metall. 1987;37:71–77. doi: 10.1016/0001-6160(89)90267-8
  • Muralidharan G, Chen H. Coarsening kinetics of coherent γ′ precipitates in ternary Ni-based alloys: the Ni–Al–Si system. Sci Technol Adv Mater. 2000;1(1):51–62. doi: 10.1016/S1468-6996(00)00005-X
  • Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys part I: Ostwald ripening theories. J Mater Sci. 2002;37(11):2171–2202. doi: 10.1023/A:1015388912729
  • Baldan A. Review progress in Ostwald ripening theories and their applications to the γ′-precipitates in nickel-base superalloys part II Nickel–base superalloys. J Mater Sci. 2002;37(11):2379–2405. doi: 10.1023/A:1015408116016
  • Viñals J, Mullins WW. Self-similarity and coarsening of three dimensional particles on a one or two dimensional matrix. J Appl Phys. 1998;83:621–628. doi: 10.1063/1.366751
  • Langer JS, Schwartz AJ. Kinetics of nucleation in near-critical fluids. Phys Rev A. 1980;21:948–958. doi: 10.1103/PhysRevA.21.948
  • Wagner R, Kampmann R. Homogeneous second phase precipitation. In: Haasen P, editor. Materials science and technology: a comprehensive treatment. Weinheim: Wiley-VCH; 1991. p. 213.