256
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Strength and strain-hardening enhancement by generating hard delta-ferrite in twinning-induced plasticity steel

ORCID Icon, , , &
Pages 827-834 | Received 05 Dec 2019, Accepted 15 Mar 2020, Published online: 24 Mar 2020

References

  • Hadfield RA. Hadfield’s manganese steel. Science. 1888;ns-12(306):284–286.
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000;16(10–11):1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Mater Sci Eng A. 2001;319:246–249. doi: 10.1016/S0921-5093(00)02019-0
  • Bouaziz O, Allain S, Scott C. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater. 2008;58(6):484–487. doi: 10.1016/j.scriptamat.2007.10.050
  • Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129–5141. doi: 10.1016/j.actamat.2010.05.049
  • Ding H, Ding H, Song D, et al. Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Mater Sci Eng A. 2011;528(3):868–873. doi: 10.1016/j.msea.2010.10.040
  • Bouaziz O, Zurob H, Chehab B, et al. Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels. Mater Sci Technol. 2011;27(3):707–709. doi: 10.1179/026708309X12535382371852
  • Fu L, Li Z, Wang H, et al. Lüders-like deformation induced by delta-ferrite-assisted martensitic transformation in a dual-phase high-manganese steel. Scr Mater. 2012;67(3):297–300. doi: 10.1016/j.scriptamat.2012.05.010
  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362. doi: 10.1016/j.actamat.2017.06.046
  • Scott C, Remy B, Collet J-L, et al. Precipitation strengthening in high manganese austenitic TWIP steels. Int J Mater Res. 2011;102(5):538–549. doi: 10.3139/146.110508
  • Fu B, Fu L, Liu S, et al. High strength-ductility nano-structured high manganese steel produced by cryogenic asymmetry-rolling. J Mater Sci Technol. 2018;34(4):695–699. doi: 10.1016/j.jmst.2017.09.017
  • Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel. Mater Charact. 2016;112:180–187. doi: 10.1016/j.matchar.2015.12.021
  • Tian YZ, Bai Y, Zhao LJ, et al. A novel ultrafine-grained Fe22Mn0.6C TWIP steel with superior strength and ductility. Mater Charact. 2017;126:74–80. doi: 10.1016/j.matchar.2016.12.026
  • Bracke L, Verbeken K, Kestens L, et al. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 2009;57(5):1512–1524. doi: 10.1016/j.actamat.2008.11.036
  • Bouaziz O, Allain S, Estrin Y. Effect of pre-strain at elevated temperature on strain hardening of twinning-induced plasticity steels. Scr Mater. 2010;62(9):713–715. doi: 10.1016/j.scriptamat.2010.01.040
  • Kim YW, Kim G, Hong S-G, et al. Energy-based approach to predict the fatigue life behavior of pre-strained Fe–18Mn TWIP steel. Mater Sci Eng A. 2011;528(13):4696–4702. doi: 10.1016/j.msea.2011.02.068
  • Iker M, Gaude-Fugarolas D, Jacques PJ, et al. Improvement of the mechanical properties of high manganese steels by combination of precipitation hardening and mechanical twinning. Adv Mater Res. 2007;15–17:852–857. doi: 10.4028/www.scientific.net/AMR.15-17.852
  • Imandoust A, Zarei-Hanzaki A, Sabet M, et al. An analysis of the deformation characteristics of a dual phase twinning-induced plasticity steel in warm working temperature regime. Mater Des. 2012;40:556–561. doi: 10.1016/j.matdes.2012.04.019
  • Imandoust A, Zarei-Hanzaki A, Heshmati-Manesh S, et al. Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel. Mater Des. 2014;53:99–105. doi: 10.1016/j.matdes.2013.06.033
  • Torabinejad V, Zarei-Hanzaki A, Sabet M, et al. The effect of low temperature annealing on the mechanical behavior of cold rolled dual-phase twinning-induced plasticity steel. Mater Des. 2011;32(4):2345–2349. doi: 10.1016/j.matdes.2010.12.032
  • Torabinejad V, Zarei-Hanzaki A, Moemeni S, et al. An investigation to the microstructural evolution of Fe–29Mn–5Al dual-phase twinning-induced plasticity steel through annealing. Mater Des. 2011;32(10):5015–5021. doi: 10.1016/j.matdes.2011.06.004
  • Razmpoosh MH, Zarei-Hanzaki A, Haghdadi N, et al. Thermal stability of an ultrafine-grained dual phase TWIP steel. Mater Sci Eng A. 2015;638:5–14. doi: 10.1016/j.msea.2015.03.066
  • Razmpoosh MH, Zarei-Hanzaki A, Heshmati-Manesh S, et al. The grain structure and phase transformations of TWIP steel during friction stir processing. J Mater Eng Perform. 2015;24(7):2826–2835. doi: 10.1007/s11665-015-1557-3
  • Razmpoosh MH, Zarei-Hanzaki A, Imandoust A. Effect of the Zener–Hollomon parameter on the microstructure evolution of dual phase TWIP steel subjected to friction stir processing. Mater Sci Eng, A. 2015;638:15–19. doi: 10.1016/j.msea.2015.04.022
  • Fu L, Fan L, Li Z, et al. Yield behaviour associated with stacking faults in a high-temperature annealed ultra-low carbon high manganese steel. Mater Sci Eng A. 2013;582:126–133. doi: 10.1016/j.msea.2013.05.087
  • Fu L, Shan M, Zhang D, et al. Microstructure evolution and mechanical behavior of a hot-rolled high-manganese dual-phase transformation-induced plasticity/twinning-induced plasticity steel. Metall Mater Trans A. 2017;48(5):2179–2192. doi: 10.1007/s11661-017-3994-0
  • Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A. 2009;40(13):3076–3090. doi: 10.1007/s11661-009-0050-8
  • Zhang XF, Terasaki H, Komizo Y. Correlation of delta-ferrite precipitation with austenite grain growth during annealing of steels. Philos Mag Lett. 2011;91(7):491–497. doi: 10.1080/09500839.2011.587464
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mater Sci Eng, A. 2011;528(22):6661–6666. doi: 10.1016/j.msea.2011.05.039
  • Kalidindi SR. Modeling the strain hardening response of low SFE FCC alloys. Int J Plast. 1998;14(12):1265–1277. doi: 10.1016/S0749-6419(98)00054-0
  • Asgari S, El-Danaf E, Kalidindi SR, et al. Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall Mater Trans A. 1997;28(9):1781–1795. doi: 10.1007/s11661-997-0109-3
  • Meyers MA, Vöhringer O, Lubarda VA. The onset of twinning in metals: a constitutive description. Acta Mater. 2001;49(19):4025–4039. doi: 10.1016/S1359-6454(01)00300-7
  • Vidoz A, Brown L. On work-hardening in ordered alloys. Philos Mag. 1962;7(79):1167–1175. doi: 10.1080/14786436208209116
  • Bhattacharya B, Sharma A, Hazra S, et al. A study of microstructures and tensile properties of two Fe-Mn-Al-Si-C alloys. Metall Mater Trans A. 2009;40(5):1190–1202. doi: 10.1007/s11661-009-9797-1
  • Lu J, Omotoso O, Wiskel JB, et al. Strengthening mechanisms and their relative Contributions to the yield strength of Microalloyed steels. Metall Mater Trans A. 2012;43(9):3043–3061. doi: 10.1007/s11661-012-1135-3
  • Agustianingrum MP, Yoshida S, Tsuji N, et al. Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy. J Alloys Compd. 2019;781:866–872. doi: 10.1016/j.jallcom.2018.12.065
  • Arsenault R, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng. 1986;81:175–187. doi: 10.1016/0025-5416(86)90261-2
  • Taya M, Lulay K, Lloyd D. Strengthening of a particulate metal matrix composite by quenching. Acta Metall Mater. 1991;39(1):73–87. doi: 10.1016/0956-7151(91)90329-Y
  • Shao J, Xiao B, Wang Q, et al. An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites. Compos Sci Technol. 2011;71(1):39–45. doi: 10.1016/j.compscitech.2010.09.014
  • Kouzeli M, Mortensen A. Size dependent strengthening in particle reinforced aluminium. Acta Mater. 2002;50(1):39–51. doi: 10.1016/S1359-6454(01)00327-5
  • Luo ZC, Huang MX. Revisit the role of deformation twins on the work-hardening behaviour of twinning-induced plasticity steels. Scr Mater. 2018;142:28–31. doi: 10.1016/j.scriptamat.2017.08.017
  • Luo ZC, Huang MX. The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels. Scr Mater. 2020;178:264–268. doi: 10.1016/j.scriptamat.2019.11.047
  • Kadkhodapour J, Schmauder S, Raabe D, et al. Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 2011;59(11):4387–4394. doi: 10.1016/j.actamat.2011.03.062
  • Kundu A, Field DP. Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel. Mater Sci Eng A. 2016;667:435–443. doi: 10.1016/j.msea.2016.05.022
  • Inoue T, Wang Z. Coupling between stress, temperature, and metallic structures during processes involving phase transformations. Mater Sci Technol. 1985;1(10):845–850. doi: 10.1179/mst.1985.1.10.845
  • Inoue T. Transformation plasticity: the mechanism and some applications. Mater Sci Forum. 2009;614:11–20. doi: 10.4028/www.scientific.net/MSF.614.11
  • Shiekhelsouk MN, Favier V, Inal K, et al. Residual and internal stress states in duplex steel with TWIP effect. Mater Sci Forum. 2006;524-525:833–838. doi: 10.4028/www.scientific.net/MSF.524-525.833

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.