292
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effects of hot rolling and homogenisation treatment on low alloy steel ingot

, , ORCID Icon &
Pages 835-842 | Received 14 Jan 2020, Accepted 15 Mar 2020, Published online: 24 Mar 2020

References

  • Chiang J, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Mater SciEng: A. 2015;638:132–142.
  • Deldar S, Mirzadeh H, Parsa MH. Prevention of surface hot shortness, development of banded structure, and mechanical properties of hot rolled Cu-bearing steel. Eng Fail Anal. 2016;68:132–137. doi: 10.1016/j.engfailanal.2016.06.001
  • Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng: A. 2019;759:90–96. doi: 10.1016/j.msea.2019.05.028
  • Sohrabi MJ, Mirzadeh H, Dehghanian C. Thermodynamics basis of saturation of martensite content during reversion annealing of cold rolled metastable austenitic steel. Vacuum. 2020;174:109220. doi: 10.1016/j.vacuum.2020.109220
  • Azizi G, Mirzadeh H, Parsa MH. The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties. Mater Sci Eng: A. 2015;639:402–406. doi: 10.1016/j.msea.2015.05.045
  • Lee K, Ryu JH, Lee SW, et al. Influence of the initial microstructure on the heat treatment response and tensile properties of TRIP-assisted steel. Metall Mater Trans A. 2016;47:5259–5265. doi: 10.1007/s11661-016-3699-9
  • Thompson SW, Howell PR. Factors influencing ferrite/pearlite banding and origin of large pearlite nodules in a hypoeutectoid plate steel. Mater Sci Technol. 1992;8:777–784. doi: 10.1179/mst.1992.8.9.777
  • Krauss G. Solidification, segregation, and banding in carbon and alloy steels. Metall Mater Trans B. 2003;34:781–792. doi: 10.1007/s11663-003-0084-z
  • Khalid FA, Farooque M, Ul Haq A, et al. Role of ferrite/pearlite banded structure and segregation on mechanical properties of microalloyed hot rolled steel. Mater Sci Technol. 1999;15:1209–1215. doi: 10.1179/026708399101505121
  • Wang H, Kang J, Dou W, et al. Microstructure and mechanical properties of hot-rolled and heat-treated TRIP steel with direct quenching process. Mater Sci Eng: A. 2017;702:350–359. doi: 10.1016/j.msea.2017.07.039
  • Alibeyki M, Mirzadeh H, Najafi M, et al. Modification of rule of mixtures for estimation of the mechanical properties of dual-phase steel. J Mater Eng Perform. 2017;26:2683–2688. doi: 10.1007/s11665-017-2687-6
  • Zhang Y, Chen WQ, Chen L, et al. Homogenisation of 20SiMn2MoV steel ingots: thermodynamic/kinetic simulation and experimental validation. Mater High Temp. 2015;32:412–418. doi: 10.1179/1878641314Y.0000000032
  • Azizi G, Mirzadeh H, Parsa MH. Unraveling the effect of homogenization treatment on decomposition of austenite and mechanical properties of low-alloyed TRIP steel. Steel Res Int. 2016;87:820–823. doi: 10.1002/srin.201500246
  • Lynch PC, Grimm TJ. Reducing microsegregation in next-generation high-strength low-alloy cast steels. Int J Metalcast. 2019;13:783–792. doi: 10.1007/s40962-019-00321-4
  • Sun QY, Wang LP, Liu DR, et al. Effects of double-procedure homogenization heat treatment on microstructure and mechanical properties of WE43A alloy. Mater Res Express. 2018;5:086517. doi: 10.1088/2053-1591/aad31d
  • Pourbahari B, Mirzadeh H, Emamy M. Elucidating the effect of intermetallic compounds on the behavior of Mg-Gd-Al-Zn magnesium alloys at elevated temperatures. J Mater Res. 2017;32:4186–4195. doi: 10.1557/jmr.2017.415
  • Lin YC, Luo SC, Yin LX, et al. Microstructural evolution and high temperature flow behaviors of a homogenized Sr-modified Al-Si-Mg alloy. J Alloys Compd. 2018;739:590–599. doi: 10.1016/j.jallcom.2017.12.278
  • Wong W, Hadadzadeh A, Benoit MJ, et al. Impact of homogenization heat treatment on the high temperature deformation behavior of cast AZ31B magnesium alloy. J Mater Process Technol. 2018;254:238–247. doi: 10.1016/j.jmatprotec.2017.11.039
  • Jucken S, Schaal E, Tougas B, et al. Impact of a post-casting homogenization treatment on the high-temperature oxidation resistance of a Cu-Ni-Fe alloy. Corros Sci. 2019;147:321–329. doi: 10.1016/j.corsci.2018.11.037
  • Sadeghi I, Wells MA, Esmaeili S. Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg. J Mater Process Technol. 2018;251:232–240. doi: 10.1016/j.jmatprotec.2017.08.042
  • Sohrabi MJ, Mirzadeh H. Estimation of homogenisation time for superalloys based on a new diffusional model. Mater Sci Technol. 2020;36:380–384. doi: 10.1080/02670836.2019.1706906
  • Reitz J, Wietbrock B, Richter S, et al. Enhanced homogenization strategy by electroslag remelting of high-manganese TRIP and TWIP steels. Adv Eng Mater. 2011;13:395–399. doi: 10.1002/adem.201000322
  • Han Y, Li C, Ren J, et al. Dendrite segregation changes in high temperature homogenization process of As-cast H13 steel. ISIJ Int. 2019;59:1893–1900. doi: 10.2355/isijinternational.ISIJINT-2019-148
  • Leslie WC. The physical metallurgy of steels. New York: McGraw-Hill; 1982.
  • Chiang J, Lawrence B, Boyd JD, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng: A. 2011;528:4516–4521. doi: 10.1016/j.msea.2011.02.032
  • Xie P, Han M, Wu CL, et al. A high-performance TRIP steel enhanced by ultrafine grains and hardening precipitates. Mater Des. 2017;127:1–7. doi: 10.1016/j.matdes.2017.04.063
  • Ghaemifar S, Mirzadeh H. Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel. Steel Res Int. 2018;89:1700531. doi: 10.1002/srin.201700531
  • Kalhor A, Mirzadeh H. Tailoring the microstructure and mechanical properties of dual phase steel based on the initial microstructure. Steel Res Int. 2017;88:1600385. doi: 10.1002/srin.201600385
  • Sohrabi MJ, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy. Vacuum. 2018;154:235–243. doi: 10.1016/j.vacuum.2018.05.019
  • Porter DA, Easterling KE, Sherif MY. Phase transformations in metals and alloys. 3rd ed. Boca Raton: CRC Press; 2009.
  • Sohrabi MJ, Mirzadeh H. Numerical and analytical solutions for determination of interdiffusion coefficients in superalloys during homogenization. Mater Today Commun. 2019;21:100631. doi: 10.1016/j.mtcomm.2019.100631
  • Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual phase steel. Metall Mater Trans A. 2017;48:4565–4573. doi: 10.1007/s11661-017-4246-z
  • Calvillo PR, Hernandez-Exposito A, Boulaajaj A, et al. Hot deformation and ductility analysis of continuous cast C40 steel by means of tensile and compression tests. Mater Sci Forum. 2010;638–642:3152–3157. doi: 10.4028/www.scientific.net/MSF.638-642.3152
  • Soleimani M, Mirzadeh H, Dehghanian C. Effect of grain size on the corrosion resistance of low carbon steel. Mater Res Express. 2020;7:016522. doi: 10.1088/2053-1591/ab62fa
  • Tejedor R, Edalati K, Benito JA, et al. High-pressure torsion of iron with various purity levels and validation of Hall-Petch strengthening mechanism. Mater Sci Eng: A. 2019;743:597–605. doi: 10.1016/j.msea.2018.11.127
  • Mahalle G, Kotkunde N, Gupta AK, et al. Microstructure characteristics and comparative analysis of constitutive models for flow stress prediction of Inconel 718 alloy. J Mater Eng Perform. 2019;28:3320–3331. doi: 10.1007/s11665-019-04116-w
  • Pourbahari B, Mirzadeh H, Emamy M. The effects of grain refinement and rare earth intermetallics on mechanical properties of as-cast and wrought magnesium alloys. J Mater Eng Perform. 2018;27:1327–1333. doi: 10.1007/s11665-018-3238-5
  • Liu MY, Shi B, Wang C, et al. Normal Hall–Petch behavior of mild steel with submicron grains. Mater Lett. 2003;57:2798–2802. doi: 10.1016/S0167-577X(02)01377-0
  • Soleimani M, Mirzadeh H, Dehghanian C. Processing route effects on the mechanical and corrosion properties of dual phase steel. Met Mater Int. in press. doi:10.1007/s12540-019-00459-0.
  • Zamani R, Mirzadeh H, Emamy M. Mechanical properties of a hot deformed Al-Mg2Si in-situ composite. Mater Sci Eng: A. 2018;726:10–17. doi: 10.1016/j.msea.2018.04.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.