146
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The crack generation and propagation during γ→α transformation in Nb-microalloyed steel

, &
Pages 868-876 | Received 13 Jan 2020, Accepted 17 Mar 2020, Published online: 27 Mar 2020

References

  • Garbarz B, Pickering F. Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium. Mater Charact. 1988;4(4):328–334.
  • Modi O, Deshmukh N, Mondal D, et al. Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater Charact. 2001;46(5):347–352.
  • Hurtado E, Morales R. Hot ductility and fracture mechanisms of a C-Mn-Nb-Al steel. Metall Trans B. 2001;32(5):919–927.
  • Cm C, Mörwald K. Micromechanical investigation of the hot ductility behavior of steel. ISIJ Int. 1999;39(11):1194–1197.
  • Zarandi F, Yue S. The effect of boron on hot ductility of Nb-microalloyed steels. ISIJ Int. 2006;46(4):591–598.
  • Mintz B, Arrowsmith J. Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand. Met. Technol. 1979;6(1):24–32.
  • Mintz B. Influence of nitrogen on hot ductility of steels and its relationship to problem of transverse cracking. Ironmak Steelmak. 1991;27(5):343–347.
  • Mintz B, Yue S, Jonas J. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int Mater Rev. 1991;36(1):187–220.
  • Mintz B. Importance of Ar3 temperature in controlling ductility and width of hot ductility trough in steels, and its relationship to transverse cracking. Mater. Sci Technol. 1996;12(2):132–138.
  • Cowley A, Abushosha R, Mintz B. Influence of Ar3 and Ae3 temperatures on hot ductility of steels. Mater Sci Technol. 1998;14(11):1145–1153.
  • Banks K, Tuling A, Mintz B. Influence of V and Ti on hot ductility of Nb containing steels of peritectic C contents. Mater Sci Technol. 2011;27(27):1309–1314.
  • Maehara Y, Ohmori Y. The precipitation of A1N and NbC and the hot ductility of low carbon steels. Mater Sci Eng. A. 1984;62(1):109–119.
  • Raj R, Ashby M. Intergranular fracture at elevated temperature. Acta Mater. 1975;23(6):653–666.
  • Kadkhodapour J, Butz A. Mechanisms of void formation during tensile testing in a commercial dual-phase steel. Acta Mater. 2011;59(7):2575–2588.
  • Benzerga AA, Leblond JB. Ductile fracture by void growth to coalescence. Adv Appl Mech. 2010;44:169–305.
  • Abdelal N. An experimental study of deformation and fracture of a nanostructured metallic material [MS thesis]. (TX): A&M University; 2009.
  • Payne J, Welsh G, Christ J, et al. Observations of fatigue crack initiation in 7075-T651Int. J. Fatigue. 2010;32(2):247–255.
  • Ghadbeigi H, Pinna C, Celotto S. Failure mechanisms in DP600 steel: initiation, evolution and fracture. Mater. Sci. Eng A. 2013;588:420–431.
  • Zhang W, Liu Y. In situ SEM testing for crack closure investigation and virtual crack annealing model development. Int J Fatigue. 2012;43:188–196.
  • Shao H, Zhao Y, Ge P, et al. In-situ SEM observations of tensile deformation of the lamellar microstructure in TC21 titanium alloy. J. Mater Sci Eng A. 2013;559:515–519.
  • Zhu ML, Xuan FZ, Tu S, et al. Observation and modeling of physically short fatigue crack closure in terms of in-situ SEM fatigue test. Mater Sci Eng A. 2014;618:86–95.
  • Zhong Y, Xiao F, Zhang J, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel. Acta Mater. 2006;54(2):435–443.
  • Maire E, Bouaziz O, Di MM, et al. Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater. 2008;56(18):4954–4964.
  • Yin H, Emi T, Shibata H. Morphological instability of δ-ferrite/ γ-austenite interphase boundary in low carbon steels. Acta Mater. 1999;47(5):1523–1535.
  • Clark S, Janik V, Rijkenberg A, et al. Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the γ/α transformation. Acta Mater. 2016;115:83–89.
  • Phelan D, Dippenaar R. Widmanstätten ferrite plate formation in low-carbon steels. Metall Mater Trans A. 2004;35(12):3701–3706.
  • Phelan D, Stanford N, Dippenaar R. In situ observations of Widmanstätten ferrite formation in a low-carbon steel. Mater Sci Eng. A. 2005;407(1-2):127–134.
  • Oku N, Asakura K, Inoue J, et al. In-situ observation of ferrite plate formation in low carbon steel during continuous cooling process. Tetsu Hagane. 2008;94(9):B33–B38.
  • Zhang D, Terasaki H, Komizo YI. In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C–Mn steel. Acta Mater. 2010;58(4):1369–1378.
  • Yin H, Emi T, Shibata H. Determination of free energy of delta ferrite/ gamma austenite interphase boundary of low carbon steels by in-situ observation. ISIJ Int. 2007;38(8):794–801.
  • Guo Y F, Wang C Y, Zhao D L, et al. Atomistic simulation of crack cleavage and blunting in bcc-Fe. J. Mater Sci Eng A. 2003;349(1-2):29–35.
  • Qian G, Cheng G, Hou Z. Effect of the induced ferrite and precipitates of Nb–Ti bearing steel on the ductility of continuous casting slab. ISIJ Int. 2014;54(7):1611–1620.
  • Balancin O, Hoffmann W, Jonas J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures. Metall Mater Trans A. 2000;31(5):1353–1364.
  • Haghdadi N, Cizek P, Beladi H, et al. A novel high-strain-rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure. Acta Mater. 2017;126:44–57.
  • Duprez L, De BC, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation. Metall Mater Trans A. 2002;33(7):1931–1938.
  • Strubbia R, Hereñú S, Giertler A, et al. Experimental characterization of short crack nucleation and growth during cycling in lean duplex stainless steels. Int J Fatigue. 2014;65:58–63.
  • Marinelli M C, Krupp U, Kübbeler M, et al. The effect of the embrittlement on the fatigue limit and crack propagation in a duplex stainless steel during high cycle fatigue. Eng Fract Mech. 2013;110:421–429.
  • Kim SK, Kim NJ, Kim JS. Effect of boron on the hot ductility of Nb-containing steel. Metall Mater Trans A. 2002;33(3):701–704.
  • Nakata H, Yasunaka H. Influence of carbo-nitride and proeutectoid ferrite on hot ductility of Nb. V Containing Steel Tetsu-to-Hagané. 1988;74(7):1290–1297.
  • Lee HS, Hwang B, Lee S, et al. Effects of martensite morphology and tempering on dynamic deformation behavior of dual-phase steels. Metall Mater Trans A. 2004;35(8):2371–2382.
  • Marinelli M C, El Bartali A, Signorelli J W, et al. Activated slip systems and microcrack path in LCF of a duplex stainless steel. Mater Sci Eng A. 2009;509(1–2):81–88.
  • Alvarez I, Marinelli MC, Malarrı JA, et al. Microstructure associated with crack initiation during low-cycle fatigue in a low nitrogen duplex stainless steel. Int J Fatigue. 2007;29(4):758–764.
  • Erdogan M. The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. J Mater Sci. 2002;37(17):3623–3630.
  • Dillien S, Seefeldt M, Allain S, et al. EBSD study of the substructure development with cold deformation of dual phase steel. J Mater Sci. 2010;527(4–5):947–953.
  • Šidjanin L, Miyasato S. Void nucleation and growth in dual phase steel wires. Mater Sci Technol. 1989;5(12):1200–1206.
  • Saeidi A, Ashrafizadeh F, Niroumand B. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater Sci Eng. A. 2014;599(11):145–149.
  • Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011;59(2):658–670.
  • Kwon D. Interfacial decohesion around spheroidal carbide particles. Scripta Metall. 1988;22(7):1161–1164.
  • Christ H-J, Düber O, Fritzen C-P, et al. Propagation behaviour of microstructural short fatigue cracks in the high-cycle fatigue regime. Comput Mater Sci. 2009;46(3):561–565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.