98
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Grain refinement and superplasticity of pipes processed by high-pressure sliding

, , , , &
Pages 877-886 | Received 23 Jan 2020, Accepted 19 Mar 2020, Published online: 09 Apr 2020

References

  • Valiev R, Islamgaliev R, Alexandrov I. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Valiev R, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39. doi: 10.1007/s11837-006-0213-7
  • Sabirov I, Murashkin M, Valiev R. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater Sci Eng A. 2013;560:1–24. doi: 10.1016/j.msea.2012.09.020
  • Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61:782–817. doi: 10.1016/j.actamat.2012.10.038
  • Langdon T. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018
  • Segal V, Reznikov V, Drobyshevskiy A, et al. Plastic working of metals by simple shear. Russian Metall. 1981;1:99–105.
  • Bridgman P. Effects of high shearing stress combined with high hydrostatic pressure. Phys Rev. 1935;48:825–847. doi: 10.1103/PhysRev.48.825
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6
  • Valiakhmetov O, Galeyev R, Salishchev G. Mechanical properties of titanium VT8 alloy with submicrocrystalline structure. Fiz Metall Metalloved. 1990;10:204–206.
  • Raab G, Valiev R, Lowe T, et al. Continuous processing of ultrafine grained Al by ECAP–conform. Mater Sci Eng A. 2004;382:30–34. doi: 10.1016/j.msea.2004.04.021
  • Xu C, Schroeder S, Berbon P, et al. Principles of ECAP–conform as a continuous process for achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010;58:1379–1386. doi: 10.1016/j.actamat.2009.10.044
  • Raab G. Plastic flow at equal channel angular processing in parallel channels. Mater Sci Eng A. 2005;410–411:230–233. doi: 10.1016/j.msea.2005.08.089
  • Gunderov D, Polyakov A, Semenova I, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater Sci Eng A. 2013;562:128–136. doi: 10.1016/j.msea.2012.11.007
  • Kamachi M, Furukawa M, Horita Z, et al. Equal-channel angular pressing using plate samples. Mater Sci Eng A. 2003;361:258–266. doi: 10.1016/S0921-5093(03)00522-7
  • Edalati K, Horita Z. Continuous high-pressure torsion. J Mater Sci. 2010;45:4578–4582. doi: 10.1007/s10853-010-4381-z
  • Edalati K, Lee S, Horita Z. Continuous high-pressure torsion using wires. J Mater Sci. 2012;47:473–478. doi: 10.1007/s10853-011-5822-z
  • Shigeno E, Komatsu T, Sumikawa K, et al. Combination of high-pressure torsion with incremental feeding for upsizing sample. Mater Trans. 2018;59:1009–1012. doi: 10.2320/matertrans.M2018039
  • Sakai G, Nakamura K, Horita Z, et al. Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A. 2005;406:268–273. doi: 10.1016/j.msea.2005.06.049
  • Fujioka T, Horita Z. Development of high-pressure sliding process for microstructural refinement of rectangular metallic sheets. Mater Trans. 2009;50:930–933. doi: 10.2320/matertrans.MRP2008445
  • Tazoe K, Honda S, Horita Z. Application of high-pressure sliding for grain refinement of Al and Mg Alloys. Mater Sci Forum. 2011;667-669:91–96. doi: 10.4028/www.scientific.net/MSF.667-669.91
  • Tazoe K, Horita Z. Grain refinement and high strengthening of 7075 aluminum alloy by high-pressure sliding. J Jpn Inst Light Metals. 2012;62:454–458. doi: 10.2464/jilm.62.454
  • Lee S, Tazoe K, Mohamed I, et al. Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging. Mater Sci Eng A; 2015;628:56–61. doi: 10.1016/j.msea.2015.01.026
  • Takizawa Y, Masuda T, Fujimitsu K, et al. Scaling up of high-pressure sliding (HPS) for grain refinement and superplasticity. Metall Mater Trans A. 2016;47:4669–4681. doi: 10.1007/s11661-016-3623-3
  • Toth L, Vu V, Dhinwal S, et al. The mechanics of high pressure compressive shearing with application to ARMCO steel. Mater Charac. 2019;154:127–137. doi: 10.1016/j.matchar.2019.05.039
  • Masuda T, Fujimitsu K, Takizawa Y, et al. High-pressure sliding using rod samples for grain refinement and superplasticity in Al and Mg alloys. Lett Mater. 2015;5:258–263. doi: 10.22226/2410-3535-2015-3-258-263
  • Masuda T, Fujimitsu K, Takizawa Y, et al. Achieving superplasticity through grain refinement of A2024 alloy round bar using high-pressure sliding. J Jpn Inst Light Metals. 2015;65:319–325. doi: 10.2464/jilm.65.319
  • Masuda T, Fujimitsu K, Takizawa Y, et al. Achieving superplasticity of ultrafine grained rod like AZ61 alloy using high pressure sliding. J Jpn Inst Metals Mater. 2016;80:128–133. doi: 10.2320/jinstmet.J2015046
  • Tang Y, Sumikawa K, Takizawa Y, et al. Multi-pass high-pressure sliding (MP-HPS) for grain refinement and superplasticity in metallic round rods. Mater Sci Eng A. 2019;748:108–118. doi: 10.1016/j.msea.2019.01.071
  • Takizawa Y, Watanabe K, Kajita T, et al. Incremental feeding high-pressure sliding for achieving large area of severe plastic deformation. J Jpn Inst Met. 2018;82:25–31. doi: 10.2320/jinstmet.J2017038
  • Takizawa Y, Sumikawa K, Watanabe K, et al. Incremental feeding high-pressure sliding for achieving large area of severe plastic deformation. Metall Mater Trans A. 2018;49:1830–1840. doi: 10.1007/s11661-018-4534-2
  • Toth L, Arzaghi M, Fundeberger J, et al. Severe plastic deformation of metals by high-pressure tube twisting. Scr Mater. 2009;60:175–177. doi: 10.1016/j.scriptamat.2008.09.029
  • Arzaghi M, Fundeberger J, Toth L, et al. Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Mater. 2012;60:4393–4408. doi: 10.1016/j.actamat.2012.04.035
  • Wang J, Li Z, Wang J, et al. Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater. 2012;67:810–813. doi: 10.1016/j.scriptamat.2012.07.028
  • Toth L, Chen C, Pougis A, et al. High pressure tube twisting for producing ultra fine grained materials: a review. Mater Trans. 2019;60:1177–1191. doi: 10.2320/matertrans.MF201910
  • Horita Z, Furukawa M, Nemoto M. Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 2000;48:3633–3640. doi: 10.1016/S1359-6454(00)00182-8
  • Musin F, Kaibyshev R, Motohashi Y, et al. High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scr Mater. 2004;50:511–516. doi: 10.1016/j.scriptamat.2003.10.021
  • Sakai G, Horita Z, Langdon T. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A. 2005;393:344–351. doi: 10.1016/j.msea.2004.11.007
  • Ohishi K, Horita Z, Smith D, et al. Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing. J Mater Res. 2001;16:583–589. doi: 10.1557/JMR.2001.0084
  • Bridgman P. On torsion combined with compression. J Appl Phys. 1943;14:273–283. doi: 10.1063/1.1714987
  • Saunders I, Nutting J. Deformation of metals using a combination of torsion and compression. Metal Sci. 1984;18:571–575. doi: 10.1179/030634584790419629
  • Harai Y, Ito Y, Horita Z. High-pressure torsion using ring specimens. Scripta Mater. 2008;58:469–472. doi: 10.1016/j.scriptamat.2007.10.037
  • Masuda T, Takizawa Y, Yumoto M, et al. Extra strengthening and superplasticity of ultrafine-grained A2024 alloy produced by high-pressure sliding. Mater Trans. 2017;58:1647–1655. doi: 10.2320/matertrans.M2017242
  • Takizawa Y, Kajita T, Kral P, et al. Superplasticity of inconel 718 after processing by high-pressure sliding(HPS). Mater Sci Eng A. 2017;682:603–612. doi: 10.1016/j.msea.2016.11.081
  • Engler O. Texture and anisotropy in cold rolled and recovery annealed AA 5182 sheets. Mater Sci Tech. 2015;31:1058–1065. doi: 10.1179/1743284714Y.0000000671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.