447
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Thermal desorption spectroscopy evaluation of hydrogen-induced damage and deformation-induced defects

, ORCID Icon, ORCID Icon, &
Pages 1389-1397 | Received 17 Mar 2020, Accepted 13 Jun 2020, Published online: 30 Jun 2020

References

  • Nagashima T, Koyama M, Bashir A, et al. Interfacial hydrogen localization in austenite/martensite dual-phase steel visualized through optimized silver decoration and scanning kelvin probe force microscopy. Mater Corros. 2017;68:306–310. doi: 10.1002/maco.201609104
  • Depover T, Verbeken K. Thermal desorption spectroscopy study of the hydrogen trapping ability of W based precipitates in a Q&T matrix. Int J Hydrog Energy. 2018;43:5760–5769. doi: 10.1016/j.ijhydene.2018.01.184
  • Pérez Escobar D, Miñambres C, Duprez L, et al. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros Sci. 2011;53:3166–3176. doi: 10.1016/j.corsci.2011.05.060
  • Laureys A, Van Stappen J, Cnudde V, et al. Electrochemical hydrogen charging to simulate hydrogen flaking in pressure vessel steels, Eng Fract Mech, under review.
  • Zapffe CA, Sims CE. The relation of defects in enamel coatings to hydrogen in steel. J Am Ceram Soc. 1940;23:187–219. doi: 10.1111/j.1151-2916.1940.tb14250.x
  • Tetelman AS, Robertson WD. Direct observation and analysis of crack propagation in iron-3% silicon single crystals. Acta Metall. 1963;11:415–426. doi: 10.1016/0001-6160(63)90166-4
  • Lee JY, Lee JL. A trapping theory of hydrogen in pure iron. Philos Mag A. 1987;56:293–309. doi: 10.1080/01418618708214387
  • Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging. Acta Mat. 2017;127:192–202. doi: 10.1016/j.actamat.2017.01.013
  • Jin TY, Liu ZY, Cheng YF. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel. Inter J Hydrog Energy. 2010;35:8014–8021. doi: 10.1016/j.ijhydene.2010.05.089
  • Huang H, Shaw WJD. Cold work effects on sulfide stress cracking of pipeline steel exposed to sour environments. Corros Sci. 1993;34:61–78. doi: 10.1016/0010-938X(93)90259-J
  • Szklarska-Smialowska Z, Xia Z. Hydrogen trapping by cold-worked X-52 steel. Corros Sci. 1997;39:2171–2180. doi: 10.1016/S0010-938X(97)00100-5
  • Van den Eeckhout E, Laureys A, Van Ingelgem Y, et al. Hydrogen permeation through deformed and heat-treated Armco pure iron. Mater Sci Technol. 2017;33:1515–1523. doi: 10.1080/02670836.2017.1342015
  • Depover T, Hajilou T, Wan D, et al. Assessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel. Mater Sci Eng A. 2019;754:613–621. doi: 10.1016/j.msea.2019.03.097
  • Huang F, Li XG, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steels. J Mater Sci. 2011;46:715–722. doi: 10.1007/s10853-010-4799-3
  • Dong CF, Xiao K, Liu ZY, et al. Hydrogen induced cracking of X80 pipeline steels. Int J Min Mater Sci. 2010;17:579–586. doi: 10.1007/s12613-010-0360-2
  • Yen SK, Huang IB. Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel. Mater Chem Phys. 2003;80:662–666. doi: 10.1016/S0254-0584(03)00084-1
  • Kumnick AJ, Johnson HH. Deep trapping states for hydrogen in deformed iron. Acta Metall. 1980;28:33–39. doi: 10.1016/0001-6160(80)90038-3
  • Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe–C–X alloys: an experimental proof of the HELP mechanism. Int J Hydrog Energy. 2018;43:3050–3061. doi: 10.1016/j.ijhydene.2017.12.109
  • Nagumo M, Ohta K, Saitoh H. Deformation induced defects in iron revealed by thermal desorption spectroscopy of tritium. Scr Mater. 1999;40(3):313–319. doi: 10.1016/S1359-6462(98)00436-9
  • Von Ellerbrock HG, Vibrans G, Stüwe HP. Diffusion of hydrogen in iron with cavities. Acta Metall. 1972;20:53–60. doi: 10.1016/0001-6160(72)90113-7
  • Sakaki K, Kawase T, Hirato M, et al. The effect of hydrogen on vacancy generation in iron by plastic deformation. Scripta Mater. 2006;55:1031–1034. doi: 10.1016/j.scriptamat.2006.08.030
  • McKee B, Saimoto S, Stewart A, et al. Positron trapping at dislocations in copper. Can J Phys. 1974;52:759–765. doi: 10.1139/p74-104
  • Choo W, Lee YJ. Thermal analysis of trapped hydrogen in pure iron. Metall Trans A. 1982;13:135–140. doi: 10.1007/BF02642424
  • Choo WY, Young Lee J. Effect of cold deformation on the hydrogen trapping phenomena in pure iron. Metall Trans A. 1983;14:1299–1305. doi: 10.1007/BF02664812
  • Zhao Y, Lu G. QM/MM study of dislocation-hydrogen/helium interactions in alpha Fe. Model Simulat Mater Sci Eng. 2011;19:065004. doi: 10.1088/0965-0393/19/6/065004
  • Itakura M, Kaburaki H, Yamaguchi M, et al. The effect of hydrogen atoms on the screw dislocation mobility in bcc: a first-principles study. Acta Mater. 2013;61:6857–6867. doi: 10.1016/j.actamat.2013.07.064
  • Tateyama Y, Ohno T. Stability and clusterization of hydrogen-vacancy complexes in alpha-Fe: an ab-initio study. Phys Rev B Condens Matter. 2003;67:174105-1–174105-10. doi: 10.1103/PhysRevB.67.174105
  • Mirzaev DA, Mirzoev AA, Okishev KY, et al. Hydrogen-vacancy interaction in bcc iron: ab initio calculations and thermodynamics. Mol Phys. 2014;112:1745–1754. doi: 10.1080/00268976.2013.861087
  • Picraux ST. Defect trapping of gas atoms in metals. Nucl Instrum Methods. 1981;182:413–437. doi: 10.1016/0029-554X(81)90715-1
  • Tien JK, Thompson AW, Bernstein IM, et al. Hydrogen transport by dislocations. Metall Trans A. 1976;7:821–829. doi: 10.1007/BF02644079
  • Castaño-Rivera P, Ramunni V, Bruzzzoni P. Hydrogen trapping in an API 5L X60 steel. Corros Sci. 2012;54:106–118. doi: 10.1016/j.corsci.2011.09.008
  • Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11A:861–890. doi: 10.1007/BF02654700
  • Gibala R, Kumnick AJ. Hydrogen trapping in iron and steels. In: Gibala R, Hehermann RF, editors. Hydrogen embrittlement and stress corrosion cracking. Materials Park (OH): ASM International; 1984. p. 61–77.
  • Oriani RA. The diffusion and trapping of hydrogen in steel. Acta Met. 1970;18:147–157. doi: 10.1016/0001-6160(70)90078-7
  • Kumnick A, Johnson H. Hydrogen transport through annealed and deformed Armco iron. Metall Trans. 1974;5:1199–1206. doi: 10.1007/BF02644334
  • Kiuchi K, McLellan RB. The solubility and diffusivity of hydrogen in well-annealed and deformed iron. Acta Metall. 1983;31:961–984. doi: 10.1016/0001-6160(83)90192-X
  • Depover T, Verbeken K. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation of Fe–C–V alloys. Mater Sci Eng. 2016;675:299–313. doi: 10.1016/j.msea.2016.08.053
  • Depover T, Verbeken K. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe–C–Ti alloys. Corros Sci. 2016;112:308–326. doi: 10.1016/j.corsci.2016.07.013
  • Krom A, Bakker A. Hydrogen trapping models in steels. Metall Mater Trans B. 2000;31:1475–1482. doi: 10.1007/s11663-000-0032-0
  • Griesche A, Dabah E, Kannengiesser T, et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta Mat. 2014;78:14–22. doi: 10.1016/j.actamat.2014.06.034
  • Solano-Alvarez W, Song EJ, Han DK, et al. Cracks in martensite plates as hydrogen traps in a bearing steel. Met Mat Trans A. 2015;46:665–673. doi: 10.1007/s11661-014-2680-8
  • Pérez Escobar D, Depover T, Duprez L, et al. Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Mater. 2012;60:2593–2605. doi: 10.1016/j.actamat.2012.01.026
  • Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates. Metall Mater Trans A Phys Metall Mater Sci. 2014;45:2412–2420. doi: 10.1007/s11661-013-2181-1
  • Castaño-Rivera P, Ramunni V, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel. Corros Sci. 2012;54:106–118. doi: 10.1016/j.corsci.2011.09.008
  • Vandemeer R, Rath B. Interface migration during recrystallization: the role of recovery and stored energy gradients. Metall Trans A. 1990;21:1143–1149. doi: 10.1007/BF02656534
  • Stüwe H, Padilha A, Siciliano F. Competition between recovery and recrystallization. Mater Sci Eng A. 2002;333:361–367. doi: 10.1016/S0921-5093(01)01860-3
  • Nagumo M. Fundamentals of hydrogen embrittlement. Singapore: Springer; 2016.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045
  • Nagumo M, Takai K, Okuda N. Nature of hydrogen trapping sites in steels induced by plastic deformation. J Alloy Compd. 1999;293-295:310–316. doi: 10.1016/S0925-8388(99)00322-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.