534
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Investigation on high-temperature mechanical properties of Al–7Si–0.6Mg alloy by wire + arc additive manufacturing

, , , , , , & show all
Pages 1516-1522 | Received 19 Apr 2019, Accepted 12 Dec 2019, Published online: 04 Aug 2020

References

  • Zhang L, Zhan W, Jin F, et al. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field. Mater Sci Tech. 2018;34:698–702. doi: 10.1080/02670836.2017.1410925
  • Petrackova K, Kondas J, Guagliano M. Mechanical performance of cold-sprayed A357 aluminum alloy coatings for repair and additive manufacturing. J Therm Spray Techn. 2017;26:1888–1897. doi: 10.1007/s11666-017-0643-5
  • Chen W, Lee S, Tan A. Effect of pre-ageing on the precipitation behaviors and mechanical properties of Al-7Si-Mg alloys. J Mater Sci Chem Eng. 2018;6:55–67.
  • Alexopoulos ND, Pantelakis SG. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Mater Des. 2004;25:419–430. doi: 10.1016/j.matdes.2003.11.007
  • Rometsch PA, Arnbergt L, Zhang D. Modelling dissolution of Mg2Si and homogenisation in Al-Si-Mg casting alloys. Int J Cast Metal Res. 1999;12:1–8. doi: 10.1080/13640461.1999.11819338
  • Dong X, Zhou J, Jia Y, et al. Effect of alloying on high temperature fatigue performance of ZL114A (Al-7Si) alloy. T Nonferr Metal Soc. 2012;22:s661–s667. doi: 10.1016/S1003-6326(12)61782-8
  • Shabestari SG, Moemeni H. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J Mater Process Tech. 2004;153–154:193–198. doi: 10.1016/j.jmatprotec.2004.04.302
  • Shaha SK, Czerwinski F, Kasprzak W, et al. Effect of Cr, Ti, V, and Zr micro-additions on microstructure and mechanical properties of the Al-Si-Cu-Mg cast alloy. Metall Mater Trans A. 2016;47:2396–2409. doi: 10.1007/s11661-016-3365-2
  • Colombo M, Gariboldi E, Morri A, et al. Er addition to Al-Si-Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties. J Alloys Compd. 2017;708:1234–1244. doi: 10.1016/j.jallcom.2017.03.076
  • Tzeng Y, Wu C, Yang C, et al. Effects of trace Be and Sc addition on the thermal stability of Al–7Si–0.6Mg alloys. Mat Sci Eng A. 2014;614:54–61. doi: 10.1016/j.msea.2014.07.013
  • Srivastava VC, Mandal RK, Ojha SN. Microstructure and mechanical properties of Al–Si alloys produced by spray forming process. Mat Sci Eng A. 2001;304–306:555–558. doi: 10.1016/S0921-5093(00)01514-8
  • Das P, Islam ST, Das S. Microstructure and mechanical properties of Al–Si alloys produced by spray forming process. Mater Sci Tech. 2016;32:898–914. doi: 10.1179/1743284715Y.0000000092
  • Zhang K, Sun YC, Wang SL, et al. Effects of cooling rate on high-temperature mechanical properties of A356 alloys. Rare Metal Mat Eng. 2011;40:63–68. doi: 10.1016/S1875-5372(11)60035-0
  • Wang F, Williams SW, Colegrove P, et al. Microstructure and mechanical properties of wire and Arc additive manufactured Ti-6Al-4V. Metall Mater Trans A. 2013;44:968–977. doi: 10.1007/s11661-012-1444-6
  • Zhu L, Li J, Yi L, et al. Characteristics of metal droplet transfer in wire-arc additive manufacturing of aluminum alloy. Int J Adv Manuf Tech. 2018;99:1521–1530. doi: 10.1007/s00170-018-2597-2
  • Lou Y, Li J, Xu J, et al. Influence of pulsed arc on the metal droplet deposited by projected transfer mode in wire-arc additive manufacturing. J Mater Process Tech. 2018;259:353–360. doi: 10.1016/j.jmatprotec.2018.04.047
  • Hönnige JR, Colegrove PA, Ganguly S, et al. Control of residual stress and distortion in aluminium wire + Arc additive manufacture with rolling. Addit Manuf. 2018;22:775–783.
  • Brice CA, Dennis N. Cooling rate determination in additively manufactured aluminum alloy 2219. Metall Mater Trans A. 2015;46:2304–2308. doi: 10.1007/s11661-015-2775-x
  • Cong B, Ding J, Williams SW. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Tech. 2015;76:1593–1606. doi: 10.1007/s00170-014-6346-x
  • Ryan E, Sabin T, Watts J, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Tech. 2018;262:577–584. doi: 10.1016/j.jmatprotec.2018.07.030
  • Wang S, Gu H, Wang W, et al. Microstructure and mechanical properties of aluminum alloy (ZL205A) wall produced by wire arc additive manufacturing method. Rare Metal Mat Eng. 2019;48:2910–2916.
  • Geng H, Li J, Xiong J, et al. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26:621–629. doi: 10.1007/s11665-016-2480-y
  • Horgar A, Fostervoll H, Nyhus B, et al. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Tech. 2018;259:68–74. doi: 10.1016/j.jmatprotec.2018.04.014
  • Gu J, Wang X, Bai J, et al. Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling. Mat Sci Eng A. 2018;712:292–301. doi: 10.1016/j.msea.2017.11.113
  • Ortega AG, Luis CG, Mehdi S, et al. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process. Sci Technol Weld Joi. 2019;24:538–547. doi: 10.1080/13621718.2018.1564986
  • Yang Q, Xia C, Deng Y, et al. Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT). Materials. 2019;12:2525. doi: 10.3390/ma12162525
  • Li C, Gu H, Wang W, et al. Investigation on microstructure and properties of aluminum alloy (ZL114A) by wire arc additive manufacturing (WAAM). Rare Metal Mat Eng. 2019;48:2917–2922.
  • Haselhuhn AS, Sanders PG, Pearce JM. Hypoeutectic aluminum–silicon alloy development for GMAW-based 3-D printing using wedge castings. Int J Metalcast. 2017;11:843–856. doi: 10.1007/s40962-017-0133-z
  • Maisonnette D, Suery M, Nelias D, et al. Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy. Mater Sci Eng. 2011;528:2718–2724. doi: 10.1016/j.msea.2010.12.011
  • Rui C, Xu Q, Guo HY, et al. Modeling of strain hardening behavior and mechanical properties of Al-7Si-Mg cast aluminum alloys during tensile process. Acta Metall Sin. 2017;53:1110–1124.
  • Wu L, Jin Q, Jiang Y. Effects of iron phase morphology on high temperature tensile fracture behavior of Al-Si alloy. T Mater Heat Treat. 2013;4:51–56.
  • Liu F, Yu XF, Zhang WL, et al. High-temperature mechanical properties and microstructure evolution of hypereutectic Al-Si alloy. Chin J Nonferrous Met. 2015;25:2358–2365.
  • Li YG. The study of elevated-temperature strengthening phase of Al-Si-Cu-Ni-Mg Piston alloys. Jinan: Shandong University; 2011. p. 6–8.
  • Ran G, Zhou JN, Wang YF. Study on tensile properties and fractography of cast A356 Aluminum alloy. Rare Metal Mat Eng. 2006;35:1620–1624.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.