341
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effect of deposition modes on electron beam directed energy deposited inconel 718

, , &
Pages 1556-1565 | Received 30 Jan 2020, Accepted 26 Jul 2020, Published online: 06 Aug 2020

References

  • Sumit KS, Prashant A, Majumdar JD. Studies on electron beam welded Inconel 718 Similar joints. Procedia Manuf. 2017;7:654–659. doi: 10.1016/j.promfg.2016.12.097
  • Dinda GP, Dasgupta AK, Mazumder J. Texture control during laser deposition of nickel-based superalloy. Scr Mater. 2012;67:503–506. doi: 10.1016/j.scriptamat.2012.06.014
  • Bilal A, Sjoerd OV, Michael EF, et al. Measurement and modelling of residual stress in wire-feed additively manufactured titanium. Mater Sci Technol. 2018;34:2250–2259. doi: 10.1080/02670836.2018.1528747
  • Kirka MM, Unocic KA, Raghavan N, et al. Microstructure development in electron beam-Melted Inconel 718 and associated tensile properties. JOM. 2016;68:1012–1020. doi: 10.1007/s11837-016-1812-6
  • Tao XW, Yao ZJ, Zhang SS, et al. Correlation between heat-treated microstructureand mechanical and fretting wear behavior of electronbeam freeform-fabricated Ti6Al4V alloy. JOM. 2019;71:2313–2320. doi: 10.1007/s11837-019-03469-w
  • Sui S, Zhong CL, Chen J, et al. Influence of solution heat treatment on microstructure and tensile properties of Inconel 718 formed by high-deposition-rate laser metal deposition. J Alloy Comp. 2018;740:389–399. doi: 10.1016/j.jallcom.2017.11.004
  • Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater. 2015;17:1099–1105. doi: 10.1002/adem.201500158
  • Helmer H, Bauereiß A, Singer RF, et al. Grain structure evolution in Inconel 718 during selective electron beam melting. Mater Sci Eng A. 2016;668:180–187. doi: 10.1016/j.msea.2016.05.046
  • You XG, Tan Y, Shi S, et al. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy. Mater Sci Eng A. 2017;689:257–268. doi: 10.1016/j.msea.2017.01.093
  • Bird RK, Joshua H. Tensile properties and microstructure of Inconel718 fabricated with electron beam freeform fabrication (EBF3). NASA/TM-2009-215929.
  • Matz JE, Eagar TW. Carbide formation in alloy 718 during electron-beam solid freeform fabrication. Metall Mater Trans A. 2002;33A:2559–2567. doi: 10.1007/s11661-002-0376-y
  • Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed. Mater. Des. 2007;28:2278–2286. doi: 10.1016/j.matdes.2006.08.008
  • Ding DH, Pan ZX, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465–481. doi: 10.1007/s00170-015-7077-3
  • Xu DH, Wang H, Tao XW, et al. Investigation on microstructure, hardness and wear resistance of electron beam wire–feeding deposited Inconel 718 alloy coatings. Met Mater Int. 2019.
  • Wesley AT, Ravi NS, MacKenzie RR, et al. Correlation betweenmicrostructure and mechanical properties in an Inconel 718 deposit produced via electron beam freeform fabrication. J Manuf Sci Eng. 2014;136:1–7.
  • Bird RK, Todd SA. Effect of orientation on tensile properties of Inconel 718 block fabricated with electron beam freeform fabrication (EBF3). NASA/TM-2010-216719.
  • Xu JQ, Zhu J, Fan JK, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication. Vacuum. 2019;167:364–373. doi: 10.1016/j.vacuum.2019.06.030
  • Wu BT, Pan ZX, Ding DH, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit Manuf. 2018;23:151–160.
  • Sui S, Chen J, Ma L, et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments. J Alloy Comp. 2019;770:125–135. doi: 10.1016/j.jallcom.2018.08.063
  • Zhang YC, Li ZG, Nie PL, et al. Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metall Mater Trans A. 2013;44:708–716. doi: 10.1007/s11661-012-1459-z
  • Dupont JN, Robino CV, Marder AR. Solidification andweldability of Nb-bearing superalloys. Weld J. 1998;77:417–431.
  • Stevens EL. Variation of hardness, microstructure, and Laves phase distribution indirect laser deposited alloy 718 cuboids. Mater Design. 2017;119:188–198. doi: 10.1016/j.matdes.2017.01.031
  • Zhang YC, Li ZG, Nie PL, et al. Effect of cooling rate on the microstructure of laser-remelted Inconel 718 coating. Metall Mater Trans A. 2013;44:5514–5521.
  • Carter LN, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel-based superalloys. Mater Sci Tech. 2016;32:657–661.
  • Zhang HY, Zhang AF, He B, et al. Investigation on the microstructure and segregation of superalloy FGH96 by direct laser forming. Appl Mech Mater. 2014;464:58–63. doi: 10.4028/www.scientific.net/AMM.464.58
  • Gäumann M, Henry S, Cleton F, et al. Epitaxial laser metal forming: analysis of microstructur formation. Mater Sci Eng A. 1999;271(1):232–241. doi: 10.1016/S0921-5093(99)00202-6
  • Sui S, Chen J, Huang WD, et al. The failure mechanism of 50% laser additive manufacturedInconel 718 and the deformation behavior of Laves phasesduring a tensile process. Int J Adv Manuf Technol. 2017;91:2733–2740. doi: 10.1007/s00170-016-9901-9
  • Lindley TC, Oates G, Richards CE. A critical of carbide cracking mechanismsin ferride/carbide aggregates. Acta Metall. 1970;18:1127–1136. doi: 10.1016/0001-6160(70)90103-3
  • Sui S, Tan H, Chen J, et al. The influence of Laves phases on the roomtemperature tensile properties of Inconel 718 fabricated by powder feeding laseradditive manufacturing. Acta Mater. 2019;164:413–427. doi: 10.1016/j.actamat.2018.10.032
  • Goods SH, Brown LM. Overview No.1: the nucleation of cavities by plasticdeformation. Acta Metall. 1978;27:1–15. doi: 10.1016/0001-6160(79)90051-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.