260
Views
12
CrossRef citations to date
0
Altmetric
Review

Surface engineered bimetallic nanoparticles based therapeutic and imaging platform: recent advancements and future perspective

, , , , , & ORCID Icon show all
Pages 1729-1748 | Received 24 Aug 2020, Accepted 30 Sep 2020, Published online: 23 Oct 2020

References

  • Rudramurthy GR, Swamy MK, Sinniah UR, et al. Nanoparticles: alternatives against drug-resistantpathogenic microbes. Molecules. 2016;21:836.
  • Jahangirian H, Lemraski EG, Webster TJ, et al. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957.
  • Watkins R, Wu L, Zhang C, et al. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055.
  • Duan S, Wang R. Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog Nat Sci Mater Int. 2013;23:113–126.
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12:1823–1838.
  • Sharma G, Gupta VK, Agarwal S, et al. Fabrication and characterization of Fe@ MoPO nanoparticles: ion exchange behavior and photocatalytic activity against malachite green. J Mol Liq. 2016;219:1137–1143.
  • Sharma G, Naushad MU, Kumar A, et al. Lanthanum/cadmium/polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant. Iran Polym J. 2015;24:1003–1013. doi:10.1007/s13726-015-0388-2.
  • Sharma G, Kumar A, Sharma S, et al. Novel development of nanoparticles to BMNP’s and their composites: a review. J King Saud Univ-Sci. 2019;31:257–269.
  • Medina-Cruz D, Saleh B, Vernet-Crua A, et al. BMNP’s for biomedical applications: a review. In: B Li, T Moriarty, T Webster, et al., editors. Racing Surf. Cham: Springer; 2020. p. 397–434.
  • Odularu AT. Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg Chem Appl. 2018;2018:1–6.
  • Ghane M, Sadeghi B, Jafari AR, et al. Synthesis and characterization of a bi-oxide nanoparticle ZnO/CuO by thermal decomposition of oxalate precursor method, (2010).
  • Asanova TI, Asanov IP, Kim M-G, et al. On formation mechanism of Pd–Ir BMNP’s through thermal decomposition of [Pd (NH 3) 4][IrCl 6]. J Nanoparticle Res. 2013;15:1994.
  • Katwal R, Kaur H, Sharma G, et al. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173–184.
  • Huang Z, Zhou H, Li C, et al. Preparation of well-dispersed PdAu BMNP’s on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. J Mater Chem. 2012;22:1781–1785.
  • Akinsiku AA, Dare EO, Ajanaku KO, et al. Modeling and synthesis of Ag and Ag/Ni allied BMNP’s by green method: optical and biological properties. Int J Biomater. 2018;2018:1–17.
  • Louis C. Chemical preparation of supported bimetallic catalysts. Gold-Based Bimetallic, a Case study, Catalysts. 2016;6:110.
  • Liu X, Wang A, Wang X, et al. Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun. 2008;27:3187–3189.
  • Liu X, Wang A, Zhang T, et al. Au–cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today. 2011;160:103–108.
  • Regan MR, Banerjee IA. Preparation of Au–Pd BMNP’s in porous germania nanospheres: a study of their morphology and catalytic activity. Scr Mater. 2006;54:909–914.
  • Nguyen MT, Zhang H, Deng L, et al. Au/Cu BMNP’s via double-target sputtering onto a liquid polymer. Langmuir. 2017;33:12389–12397.
  • Okazaki K, Kiyama T, Hirahara K, et al. Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem Commun. 2008;6:691–693.
  • Guo X, Brault P, Zhi G, et al. Synergistic combination of plasma sputtered Pd–Au BMNP’s for catalytic methane combustion. J Phys Chem C. 2011;115:11240–11246.
  • Sharma G, Kumar A, Naushad M, et al. Polyacrylamide@ Zr (IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior. J Ind Eng Chem. 2016;33:201–208.
  • Zielińska-Jurek A, Hupka J. Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal Today. 2014;230:181–187.
  • Rosseler O, Louvet A, Keller V, et al. Enhanced CO photocatalytic oxidation in the presence of humidity by tuning composition of Pd–Pt BMNP’s supported on TiO2. Chem Commun. 2011;47:5331–5333.
  • Behnajady MA, Eskandarloo H. Characterization and photocatalytic activity of Ag–Cu/TiO2 nanoparticles prepared by sol–gel method. J Nanosci Nanotechnol. 2013;13:548–553.
  • Hai Z, Kolli NE, Chen J, et al. Radiolytic synthesis of Au–Cu BMNP’s supported on TiO2: application in photocatalysis. New J Chem. 2014;38:5279–5286.
  • Hai Z, El Kolli N, Uribe DB, et al. Modification of TiO2 by bimetallic Au–Cu nanoparticles for wastewater treatment. J Mater Chem A. 2013;1:10829–10835.
  • Sandoval A, Aguilar A, Louis C, et al. Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipi-tation: high activity and stability in CO oxidation. J Catal. 2011;281:40–49.
  • Wang H-K, Yi C-Y, Tian L, et al. Ag-Cu BMNP’s prepared by microemulsion method as catalyst for epoxidation of styrene. J Nanomater. 2012;2012:1–8.
  • Ahmed J, Ramanujachary KV, Lofland SE, et al. Bimetallic Cu–Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloids Surf Physicochem Eng Asp. 2008;331:206–212.
  • Wen M, Liu Q-Y, Wang Y-F, et al. Positive microemulsion synthesis and magnetic property of amorphous multicomponent Co-, Ni-and Cu-based alloy nanoparticles. Colloids Surf Physicochem Eng Asp. 2008;318:238–244.
  • Feng J, Zhang C-P. Preparation of Cu–Ni alloy nanocrystallites in water-in-oil microemulsions. J Colloid Interface Sci. 2006;293:414–420.
  • Feng S-H, Li G-H. Hydrothermal and solvothermal syntheses. In: Xu Ruren, Xu Yan, editors. Mod. Inorg. Synth. Chem. 2. China: Elsevier; 2017. p. 73–104.
  • Jingyu S, Jianshu H, Yanxia C, et al. Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol. Int J Electrochem Sci. 2007;2:64–71.
  • Sharma G, Dionysiou DD, Sharma S, et al. Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B. Catal Today. 2019;335:437–451. doi:10.1016/j.cattod.2019.03.063.
  • Sharma G, Kumar A, Sharma S, et al. Fabrication of oxidized graphite supported La2O3/ZrO2 nanocomposite for the photoremediation of toxic fast green dye. J Mol Liq. 2019;277:738–748. doi:10.1016/j.molliq.2018.12.126.
  • Sharma G, Kumar A, Naushad M, et al. Photoremediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots based nanocomposites. J Clean Prod. 2018;172:2919–2930. doi:10.1016/j.jclepro.2017.11.122.
  • Sharma G, Kumar A, Sharma S, et al. Fe3O4/ZnO/Si3N4 nanocomposite based photocatalyst for the degradation of dyes from aqueous solution. Mater Lett. 2020;278:128359. doi:10.1016/j.matlet.2020.128359.
  • Zhang B-W, Sheng T, Wang Y-X, et al. Platinum–cobalt BMNP’s with Pt skin for electro-oxidation of ethanol. ACS Catal. 2017;7:892–895.
  • Gao Y, Wang F, Wu Y, et al. Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles. Chem Eng J. 2016;285:459–466.
  • Liu J, Zhu Y, Liu C, et al. Excellent selectivity with high conversion in the semihydrogenation of alkynes using palladium-based bimetallic catalysts. ChemCatChem. 2017;9:4053–4057.
  • Yin Z, Gao D, Yao S, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy. 2016;27:35–43.
  • Eteya MM, Rounaghi GH, Deiminiat B. Fabrication of a new electrochemical sensor based on AuPt BMNP’s decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem J. 2019;144:254–260.
  • Amiripour F, Azizi SN, Ghasemi S. Gold-copper BMNP’s supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine. Biosens Bioelectron. 2018;107:111–117.
  • Zhou Y, Xu M, Liu Y, et al. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells. Colloids Surf B Biointerfaces. 2016;144:118–124.
  • McGrath AJ, Chien Y-H, Cheong S, et al. Gold over branched palladium nanostructures for photothermal cancer therapy. Acs Nano. 2015;9:12283–12291.
  • Kumari MM, Jacob J, Philip D. Green synthesis and applications of Au–Ag BMNP’s. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:185–192.
  • Yu H, He Y. Seed-assisted synthesis of dendritic Au–Ag BMNP’s with chemiluminescence activity and their application in glucose detection. Sens Actuators B Chem. 2015;209:877–882.
  • Sahu NK, Gupta J, Bahadur D. PEGylated FePt–Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans. 2015;44:9103–9113.
  • Naha PC, Lau KC, Hsu JC, et al. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale. 2016;8:13740–13754.
  • Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172–178.
  • Lai J, Luque R, Xu G. Recent advances in the synthesis and electrocatalytic applications of platinum-based bimetallic alloy nanostructures. ChemCatChem. 2015;7:3206–3228.
  • Lai J, Niu W, Luque R, et al. Solvothermal synthesis of metal nanocrystals and their applications. Nano Today. 2015;10:240–267.
  • Porter NS, Wu H, Quan Z, et al. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc Chem Res. 2013;46:1867–1877.
  • Tian K, Prestgard M, Tiwari A. A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C. 2014;41:100–118.
  • Wang G-H, Hilgert J, Richter FH, et al. Platinum–cobalt BMNP’s in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat Mater. 2014;13:293–300.
  • Jeyabharathi C, Venkateshkumar P, Mathiyarasu J, et al. Platinum–tin BMNP’s for methanol tolerant oxygen-reduction activity. Electrochim Acta. 2008;54:448–454.
  • Aziza WB, Petit JF, Demirci UB, et al. Bimetallic nickel-based nanocatalysts for hydrogen generation from aqueous hydrazine borane: Investigation of iron, cobalt and palladium as the second metal. Int J Hydrog Energy. 2014;39:16919–16926.
  • Bokare AD, Chikate RC, Rode CV, et al. Iron-nickel BMNP’s for reductive degradation of azo dye orange G in aqueous solution. Appl Catal B Environ. 2008;79:270–278.
  • Long F, Zhang Z, Wang J, et al. Cobalt-nickel BMNP’s decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim Acta. 2015;168:337–345.
  • Beluomini MA, da Silva JL, de Sá AC, et al. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: a review. J Electroanal Chem. 2019;840:343–366.
  • Muraza O, Galadima A. A review on coke management during dry reforming of methane. Int J Energy Res. 2015;39:1196–1216.
  • Bian Z, Das S, Wai MH, et al. A review on bimetallic nickel-based catalysts for CO2 reforming of methane. Chem Phys Chem. 2017;18:3117–3134.
  • Schrick B, Blough JL, Jones AD, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel− iron nanoparticles. Chem Mater. 2002;14:5140–5147.
  • Varima N, Bokare AD, Chikate RC, et al. Reductive dechlorination of γ-hexachlorocyclohexane using Fe-Pd BMNP’s. J Hazard Mater. 2010;175:680–687.
  • Nybom SMK, Dziga D, Heikkilä JE, et al. Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon. 2012;59:171–181.
  • Li X, Elliott DW, Zhang W. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci. 2006;31:111–122.
  • Jacobson MH, Darrow LA, Barr DB, et al. Serum Polybrominated biphenyls (PBBs) and polychlorinated biphenyls (PCBs) and thyroid function among Michigan adults several decades after the 1973–1974 PBB contamination of livestock feed. Environ Health Perspect. 2017;125:097020.
  • Wang R, Tang T, Huang K, et al. Debromination of polybrominated biphenyls (PBBs) by zero valent metals and iron-based bimetallic particles: mechanisms, pathways and predicting descriptor. Chem Eng J. 2018;351:773–781.
  • Tee Y-H, Bachas L, Bhattacharyya D. Degradation of trichloroethylene by iron-based BMNP’s. J Phys Chem C. 2009;113:9454–9464.
  • Li R, Gao Y, Jin X, et al. Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. J Colloid Interface Sci. 2015;438:87–93.
  • Li Y, Fan X, Qi J, et al. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010;3:429–437.
  • Vilcocq L, Cabiac A, Especel C, et al. Transformation of sorbitol to biofuels by heterogeneous catalysis: chemical and industrial considerations. Oil Gas Sci Technol D’IFP Energ Nouv. 2013;68:841–860.
  • Heugebaert TS, De Corte S, Sabbe T, et al. Biodeposited Pd/Au BMNP’s as novel Suzuki catalysts. Tetrahedron Lett. 2012;53:1410–1412.
  • Kwon EE, Kim YT, Kim HJ, et al. Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts. J Environ Manage. 2018;227:329–334.
  • Ksar F, Ramos L, Keita B, et al. Bimetallic palladium−gold nanostructures: application in ethanol oxidation. Chem Mater. 2009;21:3677–3683.
  • Mott D, Luo J, Njoki PN, et al. Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal Today. 2007;122:378–385.
  • Chen H, Zuo X, Su S, et al. An electrochemical sensor for pesticide assays based on carbon nanotube-enhanced acetycholinesterase activity. Analyst. 2008;133:1182–1186.
  • Upadhyay S, Rao GR, Sharma MK, et al. Immobilization of acetylcholineesterase–choline oxidase on a gold–platinum BMNP’s modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron. 2009;25:832–838.
  • Landon P, Collier PJ, Carley AF, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys. 2003;5:1917–1923.
  • Pritchard J, Kesavan L, Piccinini M, et al. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au− Pd catalysts prepared by sol immobilization. Langmuir. 2010;26:16568–16577.
  • Enache DI, Edwards JK, Landon P, et al. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science. 2006;311:362–365.
  • Della Pina C, Falletta E, Rossi M. Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal. 2008;260:384–386.
  • Wang X, Sun S, Huang Z, et al. Preparation and catalytic activity of PVP-protected Au/Ni BMNP’s for hydrogen generation from hydrolysis of basic NaBH4 solution. Int J Hydrog Energy. 2014;39:905–916.
  • Cui Y, Ren B, Yao J-L, et al. Synthesis of AgcoreAushell BMNP’s for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B. 2006;110:4002–4006.
  • Rogach AL. Nanofabrication towards biomedical applications.techniques, tools, applications, and impact. Edited by Challa S. S. R. Kumar, Josef Hormes, and Carola Leuschner. Small. 2005;1:1010–1010. doi:10.1002/smll.200500222.
  • Ahmed K, Zaidi SF. Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J Pak Med Assoc. 2013;63:504.
  • Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30:531–539.
  • Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev. 2010;62:339–345.
  • McNamara K, Tofail SA. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys. 2015;17:27981–27995.
  • Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.
  • Shi S, Huang Y, Chen X, et al. Optimization of surface coating on small Pd nanosheets for in vivo near-infrared photothermal therapy of tumor. ACS Appl Mater Interfaces. 2015;7:14369–14375.
  • Cl C, Lr K, Sy L, et al. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2012;34:1128–1134. doi:10.1016/j.biomaterials.2012.10.044.
  • Das P, Mudigunda SV, Darabdhara G, et al. Biocompatible functionalized AuPd BMNP’s decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J Photochem Photobiol B. 2020: 112028. doi:10.1016/j.jphotobiol.2020.112028.
  • Cui BZ, Marinescu M, Liu JF. High magnetization Fe-Co and Fe-Ni submicron and nanosize particles by thermal decomposition and hydrogen reduction. J Appl Phys. 2014;115:17A315.
  • Wan J, Cai W, Meng X, et al. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun. 2007;47:5004–5006.
  • Kuznetsov AA, Leontiev VG, Brukvin VA, et al. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J Magn Magn Mater. 2007;311:197–203.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–1037.
  • Kumar S, Majhi RK, Singh A, et al. Carbohydrate-coated gold-silver nanoparticles for efficient elimination of multidrug resistant bacteria and in vivo wound healing. ACS Appl Mater Interfaces. 2019;11:42998–43017. doi:10.1021/acsami.9b17086.
  • Zhao X, Jia Y, Dong R, et al. BMNP’s against multi-drug resistant bacteria. Chem Commun. 2020;56:10918–10921. doi:10.1039/D0CC03481A.
  • Sharma M, Yadav S, Ganesh N, et al. Biofabrication and characterization of flavonoid-loaded Ag, Au, Au–Ag BMNP’s using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio-efficacy. Prog Biomater. 2019;8:51–63.
  • Li J-F, Zhang Y-J, Ding S-Y, et al. Core–shell nanopart-icle-enhanced Raman spectroscopy. Chem Rev. 2017;117:5002–5069.
  • Asharani PV, Lianwu YI, Gong Z, et al. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology. 2011;5:43–54.
  • Yang Q, Peng J, Xiao Y, et al. Porous Au@ Pt nanoparticles: therapeutic platform for tumor chemo-photothermal co-therapy and alleviating doxorubicin-induced oxidative damage. ACS Appl Mater Interfaces. 2018;10:150–164.
  • Wu W, Shen J, Gai Z, et al. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery. Biomaterials. 2011;32:9876–9887.
  • Hoseinzadeh E, Makhdoumi P, Taha P, et al. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017;18:120–128.
  • Formaggio DMD, de Oliveira Neto XA, Rodrigues LDA, et al. In vivo toxicity and antimicrobial activity of AuPt BMNP’s. J Nanoparticle Res. 2019;21:244. doi:10.1007/s11051-019-4683-2.
  • Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria – ‘A Battle of the Titans’. Front Microbiol. 2018;9:1441.
  • Syed B, Karthik N, Bhat P, et al. Phyto-biologic BMNP’s bearing antibacterial activity against human pathogens. J King Saud Univ – Sci. 2019;31:798–803. doi:10.1016/j.jksus.2018.01.008.
  • Nazeruddin GM, Prasad RN, Shaikh YI, et al. Synergetic effect of Ag-Cu BMNP’s on antimicrobial activity. Pharm Lett. 2014;3:129–136.
  • Paszkiewicz M, Gołąbiewska A, Rajski Ł, et al. Synthesis and characterization of monometallic (Ag, Cu) and bimetallic Ag-Cu particles for antibacterial and antifungal applications. J Nanomater. 2016;2016:e2187940. doi:10.1155/2016/2187940.
  • Perdikaki A, Galeou A, Pilatos G, et al. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle–graphene composites with enhanced antibacterial performance. ACS Appl Mater Interfaces. 2016;8:27498–27510. doi:10.1021/acsami.6b08403.
  • Sharma M, Hazra S, Basu S. Synthesis of heterogeneous Ag-Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Adv Powder Technol. 2017;28:3085–3094.
  • Banerjee M, Sharma S, Chattopadhyay A, et al. Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale. 2011;3:5120–5125. doi:10.1039/C1NR10703H.
  • Ramakritinan CM, Kaarunya E, Shankar S, et al. Antibacterial effects of Ag, Au and bimetallic (Ag-Au) nanoparticles synthesized from red algae, in: Solid state phenom. Trans Tech Publ. 2013;201:211–230.
  • Van Tien H, Tri N, Anh NP, et al. Characterization and antibacterial activity of silver-manganese BMNP’s biofabricated using arachis pintoi extract. Int J Pharm Phytopharm Res EIJPPR. 2020;10:70–76.
  • Hu M, Li C, Li X, et al. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif Cells Nanomedi-cine Biotechnol. 2018;46:1248–1257. doi:10.1080/21691401.2017.1366339.
  • Akinsiku AA, Dare EO, Ajanaku KO, et al. Modeling and synthesis of Ag and Ag/Ni Allied BMNP’s by green method: optical and biological properties. Int J Biomater. 2018;2018:e9658080. doi:10.1155/2018/9658080.
  • Gutiérrez JA, Caballero S, Díaz LA, et al. High antifungal activity against candida species of monometallic and BMNP’s synthesized in nanoreactors. ACS Biomater Sci Eng. 2018;4:647–653.
  • Schreml S, Szeimies R-M, Prantl L, et al. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63:866–881.
  • Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173:370–378.
  • Ahmadi M, Adibhesami M. The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharm Res IJPR. 2017;16:661.
  • Biondi-Zoccai GG, Lotrionte M, Agostoni P, et al. A systematic review and meta-analysis on the hazards of discontinuing or not adhering to aspirin among 50 279 patients at risk for coronary artery disease. Eur Heart J. 2006;27:2667–2674.
  • Parani M, Lokhande G, Singh A, et al. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces. 2016;8:10049–10069.
  • Taner M, Sayar N, Yulug IG, et al. Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys. J Mater Chem. 2011;21:13150–13154.
  • Kim H-E, Lee H-J, Kim MS, et al. Differential microbicidal effects of bimetallic iron–copper nanoparticles on Escherichia coli and MS2 Coliphage. Environ Sci Technol. 2019;53:2679–2687.
  • Das M, Goswami U, Kandimalla R, et al. Iron–copper bimetallic nanocomposite reinforced dressing materials for infection control and healing of diabetic wound. ACS Appl Bio Mater. 2019;2:5434–5445.
  • Orlowski P, Zmigrodzka M, Tomaszewska E, et al. Polyphenol-conjugated bimetallic Au@ AgNPs for improved wound healing. Int J Nanomedicine. 2020;15:4969–4990.
  • Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing – a review. Anal Chim Acta. 2011;706:8–24.
  • Yoo D, Lee J-H, Shin T-H, et al. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44:863–874.
  • Xu YH, Bai J, Wang J-P. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J Magn Magn Mater. 2007;311:131–134.
  • Srinoi P, Chen Y-T, Vittur V, et al. BMNP’s: enhanced magnetic and optical properties for emerging biological applications. Appl Sci. 2018;8:1106.
  • Zhao M, Beauregard DA, Loizou L, et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med. 2001;7:1241–1244.
  • Semelka RC, Helmberger TK. Contrast agents for MR imaging of the liver. Radiology. 2001;218:27–38.
  • Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol. 2003;13:1266–1276.
  • Simon GH, Bauer J, Saborovski O, et al. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning. Eur Radiol. 2006;16:738–745.
  • Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18:393–403.
  • Saita S, Maenosono S. Formation mechanism of FePt nanoparticles synthesized via pyrolysis of iron (III) ethoxide and platinum (II) acetylacetonate. Chem Mater. 2005;17:6624–6634.
  • Maenosono S, Suzuki T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320:L79–L83.
  • Yang H, Zhang J, Tian Q, et al. One-pot synthesis of amphiphilic superparamagnetic FePt nanoparticles and magnetic resonance imaging in vitro. J Magn Magn Mater. 2010;322:973–977.
  • Zhang J, Yang H, Fang J, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010;10:638–644.
  • Choi S-I, Choi R, Han SW, et al. Shape-controlled synthesis of Pt3Co nanocrystals with high electrocatalytic activity toward oxygen reduction. Chem Eur J. 2011;17:12280–12284.
  • Yin S, Li Z, Cheng L, et al. Magnetic PEGylated Pt 3 Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. Nanoscale. 2013;5:12464–12473.
  • Jun Y-W, Lee J-H, Cheon J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed. 2008;47:5122–5135.
  • Seo WS, Lee JH, Sun X, et al. Feco/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater. 2006;5:971–976.
  • Fan HJ, Gösele U, Zacharias M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small. 2007;3:1660–1671.
  • Paul A. The Kirkendall effect in solid state diffusion. Lab Mater Interface Chem. 2004;1:1–146.
  • Giovagnini L, Ronconi L, Aldinucci D, et al. Synthesis, characterization, and comparative in vitro cytotoxicity studies of platinum (II), palladium (II), and gold (III) methylsarcosinedithiocarbamate complexes. J Med Chem. 2005;48:1588–1595.
  • Gao J, Liang G, Cheung JS, et al. Multifunctional yolk− shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc. 2008;130:11828–11833.
  • Brink JA. Use of high concentration contrast media (HCCM): principles and rationale – body CT. Eur J Radiol. 2003;45:S53–S58.
  • Kong WH, Lee WJ, Cui ZY, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials. 2007;28:5555–5561.
  • Jeong JM, Kim YJ, Lee YS, et al. Lipiodol solution of a lipophilic agent, 188Re-TDD, for the treatment of liver cancer. Nucl Med Biol. 2001;28:197–204.
  • Rabin O, Perez JM, Grimm J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5:118–122.
  • Lyon JL, Fleming DA, Stone MB, et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett. 2004;4:719–723.
  • Guo R, Wang H, Peng C, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C. 2010;114:50–56.
  • Zhang S, Qi Y, Yang H, et al. Optimization of the composition of bimetallic core/shell Fe 2 O 3/Au nanoparticles for MRI/CT dual-mode imaging. J Nanoparticle Res. 2013;15:2023.
  • Ewesuedo RB, Ratain MJ. Principles of cancer chemo-therapy. In: Vokes E.E, Golomb H.M, editors. Oncol. Ther. 1. Berlin, Heidelberg: Springer; 2003. p. 19–66.
  • Skeel RT, Khleif SN. Handbook of cancer chemotherapy. Philadelphia: Lippincott Williams & Wilkins; 2003.
  • Wong HL, Bendayan R, Rauth AM, et al. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:491–504.
  • Yang F, Jin C, Subedi S, et al. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev. 2012;38:566–579.
  • Jiang T, Song J, Zhang W, et al. Au–ag@ Au hollow nanostructure with enhanced chemical stability and improved photothermal transduction efficiency for cancer treatment. ACS Appl Mater Interfaces. 2015;7:21985–21994.
  • Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. In: I Cree, editor. Cancer cell Cult. 1. USA: Humana Press; 2011. p. 237–245.
  • Crowley LC, Marfell BJ, Scott AP, et al. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb Protoc. 2016;2016:pdb. prot087288.
  • Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56.
  • Ferlay J, Shin H-R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917.
  • Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–236.
  • Blixt O, Bueti D, Burford B, et al. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res. 2011;13:R25.
  • Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal Chem. 2011;83:4440–4452.
  • Stoeva SI, Lee J-S, Smith JE, et al. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc. 2006;128:8378–8379.
  • Chen X, Estévez M-C, Zhu Z, et al. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem. 2009;81:7009–7014.
  • Nabavinia MS, Gholoobi A, Charbgoo F, et al. Anti-MUC1 aptamer: a potential opportunity for cancer treatment. Med Res Rev. 2017;37:1518–1539.
  • Berti L, Alessandrini A, Facci P. DNA-templated photoinduced silver deposition. J Am Chem Soc. 2005;127:11216–11217.
  • Wu P, Gao Y, Zhang H, et al. Aptamer-guided silver–gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem. 2012;84:7692–7699.
  • Ramos AP, Cruz MAE, Tovani CB, et al. Biomedical applications of nanotechnology. Biophys Rev. 2017;9:79–89.
  • Jiang H-L, Xu Q. Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem. 2011;21:13705–13725.
  • Zhao Y, Ye C, Liu W, et al. Tuning the composition of AuPt BMNP’s for antibacterial application. Angew Chem Int Ed. 2014;53:8127–8131.
  • Vareessh M, Moganavelli S. An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin, Nanomed. 2017;12:2625–2640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.