496
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Research on high specific strength as-cast AlxNbTiVZr high entropy alloys

ORCID Icon, , , , &
Pages 1762-1770 | Received 18 Nov 2019, Accepted 06 Oct 2020, Published online: 23 Oct 2020

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Senkov ON, Senkova SV, Dimiduk DM, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci. 2012;47:6522–6534. doi: 10.1007/s10853-012-6582-0
  • Guo NN, Wang L, Luo LS, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high entropy alloy. Mater Design. 2015;81:87–94. doi: 10.1016/j.matdes.2015.05.019
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta-20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Zhang L, Cao ZY, Liu YB, et al. Effect of Al content on the microstructures and mechanical properties of Mg-Al alloys. Mater Sci Eng A. 2009;508:129–133. doi: 10.1016/j.msea.2008.12.029
  • Yang TF, Xia SQ, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloy. Mater Sci Eng A. 2015;648:15–22. doi: 10.1016/j.msea.2015.09.034
  • Senkov ON, Senkova SV, Miracle DB, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system. Mater Sci Eng A. 2013;565:51–62. doi: 10.1016/j.msea.2012.12.018
  • Stepanov ND, Yurchenko NY, Shaysultanov DG, et al. Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater Sci Technol. 2015;31:1184–1193. doi: 10.1179/1743284715Y.0000000032
  • Vishwanadh B, Sarkar N, Gangil S, et al. Synthesis and microstructural characterization of a novel multicomponent equiatomic ZrNbAlTiV high entropy alloy. Scripta Mater. 2016;124:146–150. doi: 10.1016/j.scriptamat.2016.07.018
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021
  • Fang SS, Xiao X, Lei X, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J Non-Cryst Solids. 2003;321:120–125. doi: 10.1016/S0022-3093(03)00155-8
  • Guo S, Ng C, Lu J, et al. Effect of valance electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505. doi: 10.1063/1.3587228
  • Wang ZJ, Huang YH, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys. Scripta Mater. 2015;94:28–31. doi: 10.1016/j.scriptamat.2014.09.010
  • Yurchenko N, Stepanov N, Salishchev G. Laves-phase formation criterion for high-entropy alloys. Mater Sci Technol. 2017;33(1):17–22. doi: 10.1080/02670836.2016.1153277
  • Hendrik JM, James DP. Special points for Brillouin-zone integrations. Phys Rev B. 1976;16:5188–5192.
  • Lin CM, Juan CC, Chang CH, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J Alloys Compd. 2015;624:100–107. doi: 10.1016/j.jallcom.2014.11.064
  • Stepanov ND, Yurchenko NY, Skibin DV, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys. J Alloys Compd. 2015;652:266–280. doi: 10.1016/j.jallcom.2015.08.224
  • Stepanov ND, Yurchenko NY, Gridneva AO, et al. Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. Mater Sci Eng, A. 2018;716:308–315. doi: 10.1016/j.msea.2018.01.061
  • Kim MJ, Kang GC, Hong SH, et al. Understanding microstructure and mechanical properties of (AlTa-0.76)xCoCrFeNi2.1 eutectic high entropy alloys via thermo-physical parameters. J Mater Sci Technol. 2020;57:131–137. doi: 10.1016/j.jmst.2020.03.045
  • Senkov ON, Rao S, Chaput KJ, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater. 2018;151:201–215. doi: 10.1016/j.actamat.2018.03.065
  • Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: microstructure and phase analysis. Acta Mater. 2013;61:1545–1557. doi: 10.1016/j.actamat.2012.11.032
  • Massalsky T. (Eds.). Binary alloy phase Diagrams, 2nd ed. Novelty (OH): Materials Park; 1996.
  • Yurchenko NY, Stepanov ND, Tikhonovsky MA, et al. Phase evolution of the AlxNbTiVZr (x=0; 0.5; 1; 1.5) high entropy alloys. Metals (Basel). 2016;6(12):298. doi: 10.3390/met6120298
  • Yurchenko NY, Stepanov ND, Shaysultanov DG, et al. Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x = 0, 0.25, 0.5, 1) high-entropy alloys. Mater Charact. 2016;121:125–134. doi: 10.1016/j.matchar.2016.09.039
  • Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett. 2015;142:153–155. doi: 10.1016/j.matlet.2014.11.162
  • Park HJ, Kim YS, Mun SC, et al. Designing of Fe-containing (Ti33Zr33Hf33)-(Ni50Cu50) high entropy alloys developed by equiatomic substitution: phase evolution and mechanical properties. J. Mater. Res. Technol. 2020;9(4):7732–7739. doi: 10.1016/j.jmrt.2020.05.071
  • Jumaev E, Hong SH, Kim JT, et al. Chemical evolution-induce strengthening on AlCoCrNi dual-phase high-entropy alloy with high specific strength. J. Alloys Compd. 2019;777:828–834. doi: 10.1016/j.jallcom.2018.11.057
  • Soni V, Senkov ON, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy. Sci. Rep. 2018;8(1):8816. doi: 10.1038/s41598-018-27144-3
  • Yurchenko NY, Stepanov ND, Gridneva AO, et al. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. J Alloys Compd. 2018;757:403–414. doi: 10.1016/j.jallcom.2018.05.099
  • Yurchenko NY, Stepanov ND, Zherebtsov SV, et al. Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy all-oys. Mater Sci Eng A. 2017;704:82–90. doi: 10.1016/j.msea.2017.08.019
  • Senkov ON, Senkova SV, Woodward C, et al. Low density refractory multiprincipal element alloys of the CrNbTiVZr system microstructure and phase analysis. Acta Mater. 2013;61:1545–1557. doi: 10.1016/j.actamat.2012.11.032
  • Xu WQ, Nick B, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater. 2015;14:1229–1235. doi: 10.1038/nmat4435
  • Park GH, Kim JT, Park HJ, et al. Development of lightweight Mg-Li-Al alloys with high specific strength. J Alloys Compd. 2016;680:116–120. doi: 10.1016/j.jallcom.2016.04.109
  • Nunes R, Adams JH, Ammons M, et al. ASM HANDBOOK volume 2 properties and selection: Nonferrous alloys and Special-Purpose Materials. Ohio: ASM International; 1990.
  • Inconel alloy 718 [Internet]. Available from: http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf
  • Stepanov ND, Yurchenko NY, Sokolovsky VS, et al. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater Lett. 2015;161:136–139. doi: 10.1016/j.matlet.2015.08.099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.