312
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of crystal orientation on the size effects of nano-scale fcc metals

&
Pages 1829-1850 | Received 02 Jul 2020, Accepted 15 Oct 2020, Published online: 02 Nov 2020

References

  • Taylor GF. A method of drawing metallic filaments and a discussion of their properties and uses. Phys Rev. 1924;23(5):655–660. DOI:10.1103/PhysRev.23.655
  • Bragg WL, Lomer WL. A dynamical model of a crystal structure. II. Proc R Soc Lond A Math Phys Sci. 1949;196(1045):171–181. DOI:10.1098/rspa.1949.0022
  • Lomer WM, Bragg WL. A dynamical model of a crystal structure. III. Proc R Soc Lond A Math Phys Sci. 1949;196(1045):182–194. DOI:10.1098/rspa.1949.0023
  • Herring C, Galt JK. Elastic and plastic properties of very small metal specimens. Phys Rev. 1952;85(6):1060–1061. DOI:10.1103/PhysRev.85.1060.2
  • Suzuki H, Ikeda S, Takeuchi S. Deformation of thin copper crystals. J Phys Soc Jpn. 1956;11(4):382–393. DOI:10.1143/JPSJ.11.382
  • Brenner SS. Growth and properties of ‘whiskers’: further research is needed to show why crystal filaments are many times as strong as large crystals. Science. 1958;128(3324):569–575. DOI:10.1126/science.128.3324.569
  • Fourie JT. The plastic deformation of thin copper single crystals: II. An electron microscope study of the surface structure. Can J Phys. 1967;45(2):777–786. DOI:10.1139/p67-059
  • Nix WD. Mechanical properties of thin films. Metall Trans A. 1989;20(11):2217–2245. DOI:10.1007/BF02666659
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46(3):411–425. DOI:10.1016/S0022-5096(97)00086-0
  • Lubarda VA. On the analysis of pure bending of rigid-plastic beams in strain-gradient plasticity. Eur J Mech A/Solids. 2017;63:43–52. DOI:10.1016/j.euromechsol.2016.12.001
  • Hashemian M, Foroutan S, Toghraie D. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech Mater. 2019;139:103209. DOI:10.1016/j.mechmat.2019.103209
  • Chen W, Kitamura T, Wang X, et al. Size effect on cyclic torsion of micro-polycrystalline copper considering geometrically necessary dislocation and strain gradient. Int J Fatigue. 2018;117:292–298. DOI:10.1016/j.ijfatigue.2018.08.027
  • Tymiak NI, Kramer DE, Bahr DF, et al. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 2001;49(6):1021–1034. DOI:10.1016/S1359-6454(00)00378-5
  • Saha R, Xue Z, Huang Y, et al. Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J Mech Phys Solids. 2001;49(9):1997–2014. DOI:10.1016/S0022-5096(01)00035-7
  • Gao H, Huang Y. Geometrically necessary dislocation and size-dependent plasticity. Scr Mater. 2003;48(2):113–118. DOI:10.1016/S1359-6462(02)00329-9
  • Aifantis KE, Soer WA, De Hosson JTM, et al. Interfaces within strain gradient plasticity: theory and experiments. Acta Mater. 2006;54(19):5077–5085. DOI:10.1016/j.actamat.2006.06.040
  • Mokios G, Aifantis EC. Gradient effects in micro-/nanoindentation. Mater Sci Technol. 2012;28(9–10):1072–1078. DOI:10.1179/1743284712Y.0000000053
  • Campbell CJ, Gill SPA. An analytical model for the flat punch indentation size effect. Int J Solids Struct. 2019;171:81–91. DOI:10.1016/j.ijsolstr.2019.05.004
  • Voyiadjis GZ, Song Y. Strain gradient continuum plasticity theories: theoretical, numerical and experimental investigations. Int J Plast. 2019;121:21–75. DOI:10.1016/j.ijplas.2019.03.002
  • Wang C, Cao QP, Feng T, et al. Indentation size effects of mechanical behavior and shear transformation zone in thin film metallic glasses. Thin Solid Films. 2018;646:36–43. DOI:10.1016/j.tsf.2017.11.029
  • Martínez-Pañeda E, Niordson CF. On fracture in finite strain gradient plasticity. Int J Plast. 2016;80:154–167. DOI:10.1016/j.ijplas.2015.09.009
  • Ban H, Yao Y, Chen S, et al. The coupling effect of size and damage in micro-scale metallic materials. Int J Plast. 2017;95:251–263. DOI:10.1016/j.ijplas.2017.04.012
  • Das S, Hofmann F, Tarleton E. Consistent determination of geometrically necessary dislocation density from simulations and experiments. Int J Plast. 2018;109:18–42. DOI:10.1016/j.ijplas.2018.05.001
  • Lin P, Nie J, Liu Z, et al. Study of two hardening mechanism caused by geometrically necessary dislocations in thin films with passivation layer. Int J Solids Struct. 2019;160:59–67. DOI:10.1016/j.ijsolstr.2018.10.015
  • Yuan S, Zhu Y, Liang S, et al. Dislocation-density based size-dependent crystal plasticity framework accounting for climb of piled up dislocations at elevated temperature. Mech Mater. 2019;134:85–97. DOI:10.1016/j.mechmat.2019.04.015
  • Kalácska S, Dankházi Z, Zilahi G, et al. Investigation of geometrically necessary dislocation structures in compressed Cu micropillars by 3-dimensional HR-EBSD. Mater Sci Eng A. 2020;770:138499, DOI:10.1016/j.msea.2019.138499
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity? I. Theory. J Mech Phys Solids. 1999;47(6):1239–1263. DOI:10.1016/S0022-5096(98)00103-3
  • Huang Y, Gao H, Nix WD, et al. Mechanism-based strain gradient plasticity – II. Analysis. J Mech Phys Solids. 2000;48(1):99–128. DOI:10.1016/S0022-5096(99)00022-8
  • Huang Y, Qu S, Hwang KC, et al. A conventional theory of mechanism-based strain gradient plasticity. Int J Plast. 2004;20(4–5):753–782. DOI:10.1016/j.ijplas.2003.08.002
  • Fleck NA, Hutchinson JW. A reformulation of strain gradient plasticity. J Mech Phys Solids. 2001;49(10):2245–2271. DOI:10.1016/S0022-5096(01)00049-7
  • Aifantis EC. Update on a class of gradient theories. Mech Mater. 2003;35(3–6):259–280. DOI:10.1016/S0167-6636(02)00278-8
  • Gurtin ME, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: small deformations. J Mech Phys Solids. 2005;53(7):1624–1649. DOI:10.1016/j.jmps.2004.12.008
  • Uchic MD, Dimiduk DM, Florando JN, et al. Exploring specimen size effects in plastic deformation of Ni3(Al, Ta). Materials Research Society Symposium - Proceedings. 2003;753:27–32. DOI:10.1557/proc-753-bb1.4
  • Uchic MD, Dimiduk DM, Florando JN, et al. Sample dimensions influence strength and crystal plasticity. Science. 2004;305(5686):986–989. DOI:10.1126/science.1098993
  • Tsagrakis I, Konstantinidis A, Aifantis EC. Size effects in tension: gradient internal variable and wavelet models. J Mech Behav Mater. 2003;14(1):41–58. DOI:10.1515/JMBM.2003.14.1.41
  • Konstantinidis A , Aifantis EC , Tsagrakis I. 1D gradient material mechanics with applications at the nanoscale. Emerg Mater Res. 2012;1(S1):41–49. DOI:10.1680/emr.2012.1.s1.006
  • Aifantis EC. Gradient material mechanics: perspectives and prospects. Acta Mech. 2014;225(4):999–1012. DOI:10.1007/s00707-013-1076-y
  • Konstantinidis AA, Zhang X, Aifantis EC. On the combined gradient-stochastic plasticity model: application to Mo-micropillar compression. AIP Conf Proc. 2015;1646:3. DOI:10.1063/1.4908575
  • E. C. Aifantis. Internal length gradient (ILG) material mechanics across scales and disciplines. In: Advances in applied mechanics, vol. 49. Academic Press; 2016. p. 1–110.
  • Dimiduk DM, Uchic MD, Rao SI, et al. Overview of experiments on microcrystal plasticity in FCC-derivative materials: selected challenges for modelling and simulation of plasticity. Model Simul Mater Sci Eng. 2007;15(2):135–146. DOI:10.1088/0965-0393/15/2/009
  • Greer JR, Oliver WC, Nix WD. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005;53(6):1821–1830. DOI:10.1016/j.actamat.2004.12.031
  • Greer JR, Nix WD. Nanoscale gold pillars strengthened through dislocation starvation. Phys Rev B – Condens Matter Mater Phys. 2006;73(24):245410. DOI:10.1103/PhysRevB.73.245410
  • El-Awady JA. Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat Commun. 2015;6(1):1–9. DOI:10.1038/ncomms6926
  • Issa I, Amodeo J, Réthoré J, et al. In situ investigation of MgO nanocube deformation at room temperature. Acta Mater. 2015;86:295–304. DOI:10.1016/j.actamat.2014.12.001
  • Chisholm C, Bei H, Lowry MB, et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 2012;60(5):2258–2264. DOI:10.1016/j.actamat.2011.12.027
  • Flanagan TJ, Kovalenko O, Rabkin E, et al. The effect of defects on strength of gold microparticles. Scr Mater. 2019;171:83–86. DOI:10.1016/j.scriptamat.2019.06.023
  • Zhang P, Salman OU, Zhang J-Y, et al. Taming intermittent plasticity at small scales. Acta Mater. 2017;128:351–364. DOI:10.1016/j.actamat.2017.02.039
  • Kiener D, Minor AM. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 2011;11(9):3816–3820. DOI:10.1021/nl201890s
  • Rinaldi A, Peralta P, Friesen C, et al. Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 2008;56(3):511–517. DOI:10.1016/j.actamat.2007.09.044
  • Parthasarathy TA, Rao SI, Dimiduk DM, et al. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr Mater. 2007;56(4):313–316. DOI:10.1016/j.scriptamat.2006.09.016
  • Rao SI, Dimiduk DM, Tang M, et al. Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos Mag. 2007;87(30):4777–4794. DOI:10.1080/14786430701591513
  • El-Awady JA, Wen M, Ghoniem NM. The role of the weakest-link mechanism in controlling the plasticity of micropillars. J Mech Phys Solids. 2009;57(1):32–50. DOI:10.1016/j.jmps.2008.10.004
  • Wang ZJ, Li QJ, Shan ZW, et al. Sample size effects on the large strain bursts in submicron aluminum pillars. Appl Phys Lett. 2012;100(7):071906, DOI:10.1063/1.3681582
  • Liang ZY, De Hosson JTM, Huang MX. Size effect on deformation twinning in face-centred cubic single crystals: experiments and modelling. Acta Mater. 2017;129:1–10. DOI:10.1016/j.actamat.2017.02.063
  • Samaee V, Gatti R, Devincre B, et al. Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing. Sci Rep. 2018;8(1):12012. DOI:10.1038/s41598-018-30639-8
  • Wang L, Teng J, Wu Y, et al. Size dependence of dislocation activities and independence on theoretical elastic strain limit in Pt nanocrystals revealed by atomic-resolution in situ investigation. Mater Today Nano. 2018;2:1–6. DOI:10.1016/j.mtnano.2018.04.007
  • Zhao XX, Wu J, Chiu YL, et al. Critical dimension for the dislocation structure in deformed copper micropillars. Scr Mater. 2019;163:137–141. DOI:10.1016/j.scriptamat.2019.01.020
  • Zhou C, Beyerlein IJ, LeSar R. Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 2011;59(20):7673–7682. DOI:10.1016/j.actamat.2011.08.032
  • Cui YN, Lin P, Liu ZL, et al. Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in FCC micropillars. Int J Plast. 2014;55:279–292. DOI:10.1016/j.ijplas.2013.11.011
  • Ryu I, Cai W, Nix WD, et al. Stochastic behaviors in plastic deformation of face-centered cubic micropillars governed by surface nucleation and truncated source operation. Acta Mater. 2015;95:176–183. DOI:10.1016/j.actamat.2015.05.032
  • Leung PSS, Leung HS, Cheng B, et al. Size dependence of yield strength simulated by a dislocation-density function dynamics approach. Model Simul Mater Sci Eng. 2015;23(3):035001. DOI:10.1088/0965-0393/23/3/035001
  • Hu J, Liu Z, Van der Giessen E, et al. Strain rate effects on the plastic flow in submicron copper pillars: considering the influence of sample size and dislocation nucleation. Extrem Mech Lett. 2017;17:33–37. DOI:10.1016/j.eml.2017.09.011
  • Sansoz F. Atomistic processes controlling flow stress scaling during compression of nanoscale face-centered-cubic crystals. Acta Mater. 2011;59(9):3364–3372. DOI:10.1016/j.actamat.2011.02.011
  • Yaghoobi M, Voyiadjis GZ. Size effects in fcc crystals during the high rate compression test. Acta Mater. 2016;121:190–201. DOI:10.1016/j.actamat.2016.09.010
  • Weinberger CR, Tucker GJ. Atomistic simulations of dislocation pinning points in pure face-centered-cubic nanopillars. Model Simul Mater Sci Eng. 2012;20(7):075001. DOI:10.1088/0965-0393/20/7/075001
  • Tucker GJ, Aitken ZH, Greer JR, et al. The mechanical behavior and deformation of bicrystalline nanowires. Model Simul Mater Sci Eng. 2013;21(1):015004. DOI:10.1088/0965-0393/21/1/015004
  • Xu S, Guo YF, Ngan AHW. A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars. Int J Plast. 2013;43:116–127. DOI:10.1016/j.ijplas.2012.11.002
  • Rohith P, Sainath G, Srinivasan VS. Effect of size, temperature and strain rate on dislocation density and deformation mechanisms in Cu nanowires. Phys B Condens Matter. 2019;561:136–140. DOI:10.1016/j.physb.2019.03.003
  • Korchuganov AV, Tyumentsev AN, Zolnikov KP, et al. Nucleation of dislocations and twins in fcc nanocrystals: dynamics of structural transformations. J Mater Sci Technol. 2019;35(1):201–206. DOI:10.1016/j.jmst.2018.09.025
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. DOI:10.1006/jcph.1995.1039
  • Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–7991. DOI:10.1103/PhysRevB.33.7983
  • O’Brien CJ, Barr CM, Price PM, et al. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals. J Mater Sci. 2018;53(4):2911–2927. DOI:10.1007/s10853-017-1706-1
  • Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–286. DOI:10.1016/0927-0256(94)90109-0
  • Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177(6):518–523. DOI:10.1016/j.cpc.2007.05.018
  • Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng. 2010;18(8):085001. DOI:10.1088/0965-0393/18/8/085001
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng. 2010;18(1):015012. DOI:10.1088/0965-0393/18/1/015012
  • Rohith P, Sainath G, Choudhary BK. Effect of orientation and mode of loading on deformation behaviour of Cu nanowires. Comput Condens Matter. 2018;17:e00330. DOI:10.1016/j.cocom.2018.e00330
  • Lee SW, Han SM, Nix WD. Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater. 2009;57(15):4404–4415. DOI:10.1016/j.actamat.2009.06.002
  • Kim JY, Greer JR. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 2009;57(17):5245–5253. DOI:10.1016/j.actamat.2009.07.027
  • Maaß R, Van Petegem S, Ma D, et al. Smaller is stronger: the effect of strain hardening. Acta Mater. 2009;57(20):5996–6005. DOI:10.1016/j.actamat.2009.08.024
  • Kiener D, Minor AM. Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy. Acta Mater. 2011;59(4):1328–1337. DOI:10.1016/j.actamat.2010.10.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.