470
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Dynamic mechanical behaviour induced by adiabatic temperature rise of Fe–Mn–Al–C steel

, ORCID Icon, , , &
Pages 280-291 | Received 29 Sep 2020, Accepted 01 Feb 2021, Published online: 15 Feb 2021

References

  • De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362.
  • Sun CY, Guo N, Fu MW, et al. Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity. Int J Plast. 2016;76:186–212.
  • Shen YF, Jia N, Misra RDK, et al. Softening behavior by excessive twinning and adiabatic heating at high strain rate in a Fe-20Mn-0.6C TWIP steel. Acta Mater. 2016;103:229–242.
  • Rahman KM, Vorontsov VA, Dye D. The dynamic behaviour of a twinning induced plasticity steel. Mater Sci Eng A. 2014;589:252–261.
  • Liang ZY, Huang W, Huang MX. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel. Mater Sci Eng A. 2015;628:84–88.
  • Xu S, Ruan D, Beynon JH, et al. Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading. Mater Sci Eng A. 2013;573:132–140.
  • Xu M, Mi Z, Li H, et al. Deformation mechanism transition in Fe-17Mn-0.4C-0.06 V TWIP steel with different strain rates. Mater Sci Technol. 2018;34(2):242–251.
  • Kang M, Park J, Sohn SS, et al. Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in twinning induced plasticity (TWIP) and low-carbon steel sheets. Mater Sci Eng A. 2017;693:170–177.
  • Park J, Kang M, Sohn SS, et al. Quasi-static and dynamic deformation mechanisms interpreted by microstructural evolution in twinning induced plasticity (TWIP) steel. Mater Sci Eng A. 2017;684:54–63.
  • Lee W-S, Liu C-Y, Sun T-N. Dynamic impact response and microstructural evolution of inconel 690 superalloy at elevated temperatures. Int J Impact Eng. 2005;32(1):210–223.
  • Ha Y, Kim H, Kwon KH, et al. Microstructural evolution in Fe-22Mn-0.4C twinning-induced plasticity steel during high strain rate deformation. Metall Mater Trans A. 2015;46(2):545–548.
  • Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Mater Sci Eng A. 2001;319-321:246–249.
  • Allain S, Chateau JP, Bouaziz O. A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel. Mater Sci Eng A. 2004;387-389:143–147.
  • Guo XR, Sun CY, Li R, et al. A dislocation density based model for twinning induced softening of TWIP steel. Comput Mater Sci. 2017;139:8–15.
  • Kim J-K, Estrin Y, De Cooman BC. Constitutive modeling of the stacking fault energy-dependent deformation behavior of Fe-Mn-C-(Al) TWIP steels. Metall Mater Trans A. 2018;49(12):5919–5924.
  • Liang ZY, Wang X, Huang W, et al. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel. Acta Mater. 2015;88:170–179.
  • Eskandari M, Mohtadi-Bonab MA, Yeganeh M, et al. High-strain-rate deformation behaviour of new high-Mn austenitic steel during impact shock-loading. Mater Sci Technol. 2019;35(1):77–88.
  • Wei X, Fu R, Li L. Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates. Mater Sci Eng A. 2007;465(1):260–266.
  • Laplanche G, Kostka A, Horst OM, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016;118:152–163.
  • Benzing JT, Poling WA, Pierce DT, et al. Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Mater Sci Eng A. 2018;711:78–92.
  • Bouaziz O, Allain S, Scott CP, et al. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid St M. 2011;15(4):141–168.
  • Kang J-H, Ingendahl T, Bleck W. A constitutive model for the tensile behaviour of TWIP steels: composition and temperature dependencies. Mater Des. 2016;90:340–349.
  • Su ZX, Li N, Sun CY, et al. Strain rate-dependent hardening with dislocation-twin interaction of Fe-Mn-Al-C steel using crystal plasticity. Mater Sci Technol. 2019;35(12):1436–1447.
  • Messerschmidt U. Dislocation dynamics during plastic deformation. Berlin: Springer Science & Business Media; 2010
  • Gottstein G. Physical foundations of materials science. Berlin: Springer Science & Business Media; 2013
  • Liang ZY, Li YZ, Huang MX. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scripta Mater. 2016;112:28–31.
  • Kocks U, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48(3):171–273.
  • Yang L, Yang L. Revisit initiation of localized plastic deformation: shear band & necking. Extreme Mech Lett. 2020;40:100914.
  • Hamada AS, Kisko A, Khosravifard A, et al. Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests. Mater Sci Eng A. 2018;712:255–265.
  • Khan R, Alfozan A. Modeling of twinning-induced plasticity using crystal plasticity and thermodynamic framework. Acta Mech. 2019;230:2687–2715.
  • Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129–5141.
  • Steinmetz DR, Jäpel T, Wietbrock B, et al. Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments. Acta Mater. 2013;61(2):494–510.
  • Seo EJ, Kim JK, Cho L, et al. Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning. Acta Mater. 2017;135:112–123.
  • Püschl W. Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog Mater Sci. 2002;47(4):415–461.
  • Rivera-Díaz-del-Castillo PEJ, Huang M. Dislocation annihilation in plastic deformation: I. Multiscale irreversible thermodynamics. Acta Mater. 2012;60(6):2606–2614.
  • Huang M, Rivera-Díaz-del-Castillo PEJ, Bouaziz O, et al. A constitutive model for high strain rate deformation in FCC metals based on irreversible thermodynamics. Mech Mater. 2009;41(9):982–988.
  • Huang M, Rivera-Díaz-del-Castillo PEJ, Perlade A, et al. Predicting the stress-strain behaviour of carbon steels under hot working conditions: An irreversible thermodynamics model. Scripta Mater. 2009;61(6):648–651.
  • Yang HK, Tian YZ, Zhang ZJ, et al. Different strain rate sensitivities between Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al twinning-induced plasticity steels. Mater Sci Eng A. 2016;655:251–255.
  • Yang HK, Zhang ZJ, Tian YZ, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels. Mater Sci Eng A. 2017;690:146–157.
  • Kim J, Lee S-J, De Cooman BC. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity. Scripta Mater. 2011;65(4):363–366.
  • Karaman I, Sehitoglu H, Gall K, et al. Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 2000;48(6):1345–1359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.