176
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of spherical inclusions on fatigue anisotropy of HSLA-100 steel

&
Pages 314-325 | Received 09 Sep 2020, Accepted 11 Feb 2021, Published online: 04 Mar 2021

References

  • Czyryca EJ, Link RE, Wong RJ, et al. Development and certification of HSLA-100 steel for Naval ship construction. Nav Eng J. 1990;102(3):63–82.
  • Ebrahimi AR, Abyazi A, Abbasi SM. Anisotropy in microalloyed S355N steel. Int J ISSI. 2008;5:14–20.
  • Heuschkel J. Anisotropy and weldability. Weld J. 1971;50(3):110–126.
  • Krishnadev M, Ghali E, Larouche, M, et al. Cleavage failure of transformer storage tank under dynamic rates of loading: influence of base plate and weldment Microstructure and toughness. Eng Fail Anal. 2006;13:1220–1232.
  • Sun GF, Yao S, Wang ZD, et al. Microstructure and mechanical properties of HSLA-100 steel repaired by laser metal deposition. Surf Coat Technol. 2018;351:198–211.
  • Abyazi A, Ebrahimi A. Mechanical anisotropy in Ca-treated and ultra-low Sulphur HSLA-100 steel. Mater Sci Technol. 2016;32(10):976–984.
  • Ghosh A, Das S, Chatterjee S, et al. Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel. Mater Charact. 2006;56(1):59–65.
  • Ray PK, Ganguly RI, Panda AK. Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables. Mater Sci Eng A. 2003;346(1):122–131.
  • Pessard E, Morel F, Bellett D, et al. A new approach to model the fatigue anisotropy due to non-metallic inclusions in forged steels. Int J Fatigue. 2012;41:168–178.
  • Pessard E, Morel F, Morel A, et al. Modelling the role of non-metallic inclusions on the anisotropic fatigue behaviour of forged steel. Int J Fatigue. 2011;33:568–577.
  • Cyril NS, Fatemi A. Experimental evaluation and modeling of sulfur content and anisotropy of sulfide inclusions on fatigue behavior of steels. Int J Fatigue. 2009;31(3):526–537.
  • Kaynak C, Ankara A, Baker T. Initiation and early growth of short fatigue cracks at inclusions. Mater Sci Technol. 1996;12:421–426.
  • Temmel C, Karlsson B, Ingesten NG. Fatigue anisotropy in cross-rolled, hardened medium carbon steel resulting from MnS inclusions. Metall Mater Trans A. 2006;37(10):2995–3007.
  • ASTM. E2283-08: standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features. West Conshohocken (PA): Annual Book of ASTM Standards, ASTM International; 2008.
  • Murakami Y. Inclusion rating by statistics of extreme values and its application to fatigue strength prediction and quality control of materials. J Res Natl Inst Stand Technol. 1994;99(4):345–345.
  • Pan X, Yang J. Probable maximum sizes of inclusions predicted by SEV and PSD for BH steels of automobile exposed panel with different sulfur contents. Metals (Basel). 2020;10:637–653.
  • Sesana R, Ossola E, Pagliassotto S, et al. Influence of microinclusion in life of rolling elements: experimental, microstructural, analytical and numerical investigation. Int J Fatigue. 2020;139:105774–105783.
  • Gao G, Xu Q, Guo H, et al. Effect of inclusion and microstructure on the very high cycle fatigue behaviors of high strength bainite/mmartensite multiphase steels. Mater Sci Eng A. 2019;739:404–414.
  • Tian C, Liu JH, Lu HC, et al. Estimation of maximum inclusion by statistics of extreme values method in bearing steel. J Iron Steel Res Int. 2017;24:1131–1136.
  • Murakami Y, Usuki H. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: fatigue limit evaluation based on statistics for extreme values of inclusion size. Int J Fatigue. 1989;11:299–307.
  • Zhang JM, Zhang JF, Yang ZG, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater Sci Eng A. 2005;394:126–131.
  • Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions. Metall Trans A. 1982;13:117–123.
  • Cheng R, Zhang J, Wang B. Formation mechanism of Voids round hard inclusion during hot rolling processes. High Temp Mater Processes. 2018;37:717–723.
  • Thomson R, Hancock J. Stress and strain fields around inclusions in a plastically deforming matrix. Proceedings of the Fourth International Conference; 1983 Aug 15–19; Stockholm, Sweden. 1983. p. 733–737.
  • Luo C. Evolution of voids close to an inclusion in hot deformation of metals. Comput Mater Sci. 2001;21:360–374.
  • Wilson AD. The influence of thickness and rolling ratio on the inclusion behavior in plate steels. Metallography. 1979;12:233–255.
  • Ray RK, Jonas JJ, Butron MP, et al. Transformation textures in steels. ISIJ Int. 1994;34:927–942.
  • Mourino NS, Petrov R, Bae J, et al. Texture dependent mechanical anisotropy of X80 pipeline steel. Adv Eng Mater. 2010;12:973–980.
  • Baczynski G, Jonas J, Collins L. The influence of rolling practice on notch toughness and texture development in high-strength linepipe. Metall Mater Trans A. 1999;30:3045–3054.
  • Silva ALV. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J Mater Res Tec. 2019;8:2408–2422.
  • Kozasu I, Shimizu T, Kubota H. The effect of nonmetallic inclusions on ductility and toughness of structural steels. Trans Iron Steel Inst Jpn. 1973;13:20–28.
  • Furuya Y, Matsuoka S, Abe T. Inclusion-controlled fatigue properties of 1800 MPA-class spring steels. Metall Mater Trans A. 2004;35:3737–3744.
  • T. Makino. The effect of inclusion geometry according to forging ratio and metal flow direction on very high-cycle fatigue properties of steel bars. Int J Fatigue 30 (2008) 1409–1418.
  • S. T. Tu, X.C. Zhang. Fatigue crack initiation mechanisms, Ref Modl Mater Sci Mater Eng (2016) 1–23.
  • Ma J, Zhang B, Xu D, et al. Effects of inclusion and loading direction on the fatigue behavior of hot rolled low carbon steel. Int J Fatigue. 2010;32:1116–1125.
  • Chan KS, Tian JW, Yang B, et al. Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200. Metall Mater Trans A. 2009;40:2545–2556.
  • Zhang Z, Wang Z. Grain boundary effects on cyclic deformation and fatigue damage. Prog Mater Sci. 2008;53:1025–1099.
  • Chan KS. Roles of microstructure in fatigue crack initiation. Int J Fatigue. 2010;32:1428–1447.
  • Lei ZQ, Hong Y, Xie J, et al. Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Mater Sci Eng A. 2012;558:234–241.
  • Gao JW, Pan XN, Han J, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles. Int J Fatigue. 2020;139:105746.
  • Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength. Int J Fatigue; 1994;161(3):163–182.
  • Rotella A, Nadot Y, Piellard M, et al. Influence of defect morphology and position on the fatigue limit of cast Al alloy: 3D characterization by X-ray microtomography of natural and artificial defects. Mater Sci Eng A. 2020;785:139347.
  • Steele RK, Rungta R R, Rice C. Metallurgical cleanliness improves Rail fatigue life. Railway Gaz. Int. 1987;143(3):175–179.
  • Kalousek J, Masel E, Grassie S. Perspective on metallurgy and contact mechanics. International heavy haul association STS Conference wheel/Rail interface; June 1999; Moscow.
  • Luo C, Ståhlberg U. Deformation of inclusions during hot rolling of steels. J Mater Process Technol. 2001;114:87–97.
  • Melander A. A finite-element study of the notch effect at surface inclusions. Int J Fatigue. 1990;12:154–164.
  • Melander A. A finite element study of short cracks with different inclusion types under rolling contact fatigue load. Int J Fatigue. 1997;19:13–24.
  • Melander A, Gustavsson A. An FEM study of driving forces of short cracks at inclusions in hard steels. Int J Fatigue. 1996;18:389–399.
  • Yang Y, Chu SJ, Chen H. Crack growth and energy release rate for an angled crack under mixed mode loading. Appl Sci. 2020;10:4227.
  • Al-Bedhany JH, Long H. Microscopic investigation of subsurface initiated damage of wind turbine gearbox bearings. J Phys Conf Ser. 2018.
  • Al-Tameemi H, Long H, Dwyer-Joyce R. Initiation of sub-surface micro-cracks and white etching areas from debonding at non-metallic inclusions in wind turbine gearbox bearing. Wear. 2018;406–407:22–32.
  • Ervasti E, Ståhlberg U. Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs: a numerical study. J Mater Process Technol. 2005;170:142–150.
  • Gusn J, Wang L, Zhang C, et al. Effects of non-metallic inclusions on the crack propagation in Bearing steel. Tribol Int. 2017;106:123–131.
  • Hsu CC, Chung HH. Analysis of influence of aluminum content on inclusion characteristic and fatigue life of bearing steel using statistics of extreme values. Adv Mater Res. 2014;939:11–18.
  • Zhang JM, Zhang J, Yang ZG, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater Sci Eng A. 2005;394:126–131.
  • Murakami Y, Endo T. Effects of small defects on fatigue strength of metals. Int J Fatigue. 1980;2:23–30.
  • Åman M, Wada K, Matsunga H, et al. The influence of interacting small defects on the fatigue limits of a pure iron and a bearing steel. Int J Fatigue. 2020;135:105560.
  • Roiko A, Hänninen H, Vuorikari H. Anisotropic distribution of non-metallic inclusions in a forged steel roll and its influence on fatigue limit. Int J Fatigue. 2012;41:158–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.