2,033
Views
11
CrossRef citations to date
0
Altmetric
Review

A review on additive manufacturing of Al–Cu (2xxx) aluminium alloys, processes and defects

ORCID Icon, &
Pages 805-829 | Received 15 Feb 2021, Accepted 18 Jul 2021, Published online: 06 Aug 2021

References

  • Khajavi SH, Partanen J, Holmström J. Additive manufacturing in the spare parts supply chain. Comput Ind. 2014;65(1):50–63.
  • Ian C, David B, Ian G. Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J. 2012;18(4):255–258.
  • Eyers DR, Potter AT. Industrial additive manufacturing: A manufacturing systems perspective. Comput Ind. 2017;(92-93):208–218.
  • Camacho DD, Clayton P, O'Brien WJ, et al. Applications of additive manufacturing in the construction industry – A forward-looking review. Autom Constr. 2018;89:110–119.
  • Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–477.
  • Prashanth KG, Scudino S, Klauss HJ, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2014;590:153–160.
  • Bourell D, Kruth JP, Leu M, et al. Materials for additive manufacturing. CIRP Ann - Manuf Technol. 2017;66(2):659–681.
  • Schmid M, Wegener K. Additive manufacturing: polymers applicable for laser sintering (LS). Procedia Eng. 2016;149:457–464.
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B: Eng. 2018;143:172–196.
  • Robinson J, Arjunan A, Stanford M, et al. Effect of silver addition in copper-silver alloys fabricated by laser powder bed fusion in situ alloying. J Alloys Compd. 2021;857:157561.
  • Arjunan A, Singh M, Baroutaji A, et al. Additively manufactured AlSi10Mg inherently stable thin and thick-walled lattice with negative Poisson’s ratio. Compos Struct. 2020;247:112469.
  • Matilainen V, et al. Characterization of process efficiency improvement in Laser Additive manufacturing. 8th International Conference on Laser Assisted Net Shape Engineering (Lane 2014). 2014;56:317–326.
  • Wycisk E, et al. Effects of defects in Laser Additive manufactured Ti-6Al-4V on fatigue properties. 8th International Conference on Laser Assisted Net Shape Engineering (Lane 2014). 2014;56:371–378.
  • Conner BP, Manogharan GP, Martof AN, et al. Making sense of 3-D printing: creating a map of additive manufacturing products and services. Addit Manuf. 2014;(1-4):64–76.
  • Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminium alloy powder. Mater Des. 2014;63:856–867.
  • Totten GE, MacKenzie SD. Handbook of aluminum: Physical Metallurgy and processes. 1 ed. New York: CRC Press; 2003.
  • Polmear I, StJohn D, Nie J-F, et al. Light alloys: Metallurgy of the Light metals. 5 ed. Metallurgy and Materials science. Oxford Butterworth-Heinemann; 2017.
  • Hosford WF. Physical metallurgy. 2 ed. CRC Press; 2010.
  • Anwar AB, Pham Q-C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol. 2017;240:388–396.
  • Chen J, Hou W, Wang X, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. Chin J Aeronaut. 2020;33(7):2043–2054.
  • Hitzler L, Janousch C, Schanz J, et al. Direction and location dependence of selective laser melted AlSi10Mg specimens. J Mater Process Technol. 2017;243:48–61.
  • Suryawanshi J, Prashanth KG, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 2016;115:285–294.
  • Wang XJ, Zhang LC, Fang MH, et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater Sci Eng A - Struct Mater Prop Microstruct Process. 2014;597:370–375.
  • Yang Q, Xia C, Deng Y, et al. Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and Arc additive manufacturing based on cold metal transfer (WAAM-CMT). Materials. 2019;12(16):2525.
  • Pereira JC, Gil E, Solaberrieta L, et al. Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: microstructure and mechanical properties in as-built/as-cast and heat-treated conditions. Mater Sci Eng A. 2020;778:139124.
  • Rao H, Giet S, Yang K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Des. 2016;109:334–346.
  • Uddin SZ, Murr LE, Terrazas CA, et al. Processing and characterization of crack-free aluminium 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit Manuf. 2018;22:405–415.
  • Sridharan N, Gussev MN, Parish CM, et al. Evaluation of microstructure stability at the interfaces of Al-6061 welds fabricated using ultrasonic additive manufacturing. Mater Charact. 2018;139:249–258.
  • Loh LE, Chua C-K, Yeong W-Y, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf. 2015;80:288–300.
  • Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature. 2017;549(7672):365–369.
  • Wang P, Li HC, Prashanth KG, et al. Selective laser melting of Al-Zn-Mg-Cu: heat treatment, microstructure and mechanical properties. J Alloys Compd. 2017;707:287–290.
  • Kaufmann N, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016. 2016;83:918–926.
  • Montero-Sistiaga ML, Mertens R, Vrancken B et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437–445.
  • Gao L, Ou X, Ni S, et al. Effects of θ′ precipitates on the mechanical performance and fracture behavior of an Al–Cu alloy subjected to overaged condition. Mater Sci Eng A. 2019;762:138091.
  • Aluminium: properties and Physical metallurgy. Aluminium Association Inc. and ASM International; 1984.
  • Sigworth GK. The corrosion of Al–Cu-based alloys and comments on the paper “effect of solidification time on microstructure, wettability and corrosion properties of A205-T7 aluminum alloys” by Amir Kordijazi et al. Int J Metalcast. 2021;15(1):13–16.
  • Bourell DL, Rosen DW, Leu MC. The roadmap for additive manufacturing and Its impact. 3d Print Addit Manuf. 2014;1(1):6–9.
  • Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng. 2013;8(3):215–243.
  • Karg M, Ahuja B, Wiesenmayer S, et al. Effects of process conditions on the Mechanical Behavior of aluminium wrought Alloy EN AW-2219 (AlCu6Mn) additively manufactured by Laser Beam Melting in powder Bed. Micromachines. 2017;8(1):23.
  • Bai JY, Yang CL, Lin SB, et al. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int J Adv Manuf Technol. 2016;86(1):479–485.
  • Zhou Y, Lin X, Kang N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminium alloy. J Mater Sci Technol. 2020;37:143–153.
  • Gu JL, Ding J, Williams SW, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy. Mater Sci Eng A - Struct Mater Prop Microstruct Process. 2016;651:18–26.
  • Gu J, Ding J, Williams SW, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminium alloys. J Mater Process Technol. 2016;230:26–34.
  • Fang X, Zhang L, Yang J, et al. Effect of characteristic substrate parameters on the deposition geometry of CMT additive manufactured Al-6.3%Cu alloy. Appl Therm Eng. 2019;162:114302.
  • Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol. 2015;76(9):1593–1606.
  • Sun R, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminium alloy with laser shock peening. J Alloys Compd. 2018.
  • Domack MS, Taminger KM, Begley M. Metallurgical mechanisms controlling mechanical properties of aluminium alloy 2219 produced by electron beam freeform fabrication. Mater Sci Forum. 2006;1(519-521):1291–1296.
  • Gu J, Bai J, Ding J, et al. Design and cracking susceptibility of additively manufactured Al-Cu-Mg alloys with tandem wires and pulsed arc. J Mater Process Technol. 2018;262:210–220.
  • Qi Z, Cong B, Qi B, et al. Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys. J Mater Process Technol. 2018;255:347–353.
  • Gharbi O, Jiang D, Feenstra DR, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros Sci. 2018;143:93–106.
  • Zhang H, Zhu H, Qi T, et al. Selective laser melting of high strength Al–Cu–Mg alloys: processing, microstructure and mechanical properties. Mater Sci Eng A. 2016;656:47–54.
  • Karg M, Ahuja B, Kuryntsev S, et al. Processability of high strength aluminium-copper alloys AW-2022 and 2024 by Laser Beam Melting in powder Bed. Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing conference; University of Texas at Austin, Texas, USA; 2014.
  • Nie X, Zhang H, Zhu H, et al. Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples. J Mater Process Technol. 2018;256:69–77.
  • Lopez-Botello O, Martinez-Hernandez U, Ramírez J, et al. Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater Des. 2017;113:369–376.
  • Rasch M, Heberle J, Dechet MA, et al. Grain structure evolution of Al–Cu alloys in powder Bed fusion with laser beam for Excellent mechanical properties. Materials. 2020;13(1):82.
  • Gharbi O, et al. Microstructure and corrosion properties of additively manufactured aluminium alloy AA2024. Proceedings of the 16th International Aluminum AlloysConference (ICAA16); 2018.
  • Qi Z, Cong B, Qi B, et al. Properties of wire + arc additively manufactured 2024 aluminium alloy with different solution treatment temperature. Mater Lett. 2018;230:275–278.
  • Gu J, Gao M, Yang S, et al. Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3-Mg1.5 alloy. Mater Des. 2020;186:108357.
  • Caiazzo F, Alfieri V, Argenio P, et al. Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminium powder: Investigation and optimization. Adv Mech Eng. 2017;9(8):1–12.
  • Mahale T, Cormier, et al. Advances in electron beam melting of aluminum alloys). Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing conference; University of Texas at Austin, Texas, USA; 2007.
  • Kenevisi MS, Lin F. Selective electron beam melting of high strength Al2024 alloy; microstructural characterization and mechanical properties. J Alloys Compd. 2020;843:155866.
  • Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting. Mater Sci Eng A - Struct Mater Prop Microstruct Process. 2018;711:562–570.
  • Nie X, Zhang H, Zhu H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys. J Alloys Compd. 2018;764:977–986.
  • Sweny RA, Tressler JF, Martukanitz RP. Development and Evaluation of an advanced aluminum alloy for additive manufacturing. J Mater Sci Eng. 2018;7(6):1–10.
  • Koutny D, et al. Processing of high strength Al-Cu alloy using 400W selective laser melting – initial study. In Lasers in manufacturing. Munich, Germany. 2015. p. 1–11.
  • Ahuja B, Karg M, Nagulin KY, et al. Fabrication and Characterization of high strength Al-Cu alloys processed using Laser Beam Melting in metal powder Bed. Phys Procedia. 2014;56:135–146.
  • Koutny D, Palousek D, Pantelejev L, et al. Influence of scanning strategies on processing of aluminum Alloy EN AW 2618 using selective laser melting. Materials. 2018;11(2):298.
  • Hu Z, Zhang H, Zhu H, et al. Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminium alloy fabricated by selective laser melting. Mater Sci Eng A. 2019;759:154–166.
  • Buchbinder D, Schleifenbaum H, Heidrich S, et al. High power selective laser melting (HP SLM) of aluminum parts. Phys Procedia. 2011;12:271–278.
  • Rashed MG, et al. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater Des. 2016;95:518–533.
  • Ion JC. Chapter 11 - surface melting, in Laser Processing of Engineering materials. Oxford: Butterworth-Heinemann; 2005. p. 261–295.
  • Pupo Y, Delgado J, Serenó L, et al. Scanning space Analysis in selective laser melting for CoCrMo powder. Procedia Eng. 2013;63:370–378.
  • Manfredi D, et al. Additive manufacturing of Al alloys and aluminium matrix Composites (AMCs). In: WA Monteiro, editor. Light metal alloys applications. Rijeka: InTech; 2014. p. Ch. 01.
  • Calignano F, Manfredi D, Ambrosio EP, et al. Influence of process parameters on surface roughness of aluminium parts produced by DMLS. Int J Adv Manuf Technol. 2013;67(9):2743–2751.
  • Shrestha S, Starr T, Chou K. A study of keyhole porosity in selective laser melting: single-track scanning With micro-CT analysis. J Manuf Sci Eng. 2019;141(7).
  • Pekok MA, Setchi R, Ryan M, et al. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int J Adv Manuf Technol. 2021;112(1):175–192.
  • Deng J, et al. Densification, microstructure, and mechanical properties of additively manufactured 2124 Al–Cu alloy by selective laser melting. Materials. 2020;13(19).
  • Karg MCH, Munk A, Ahuja B, et al. Expanding particle size distribution and morphology of aluminium-silicon powders for Laser Beam Melting by dry coating with silica nanoparticles. J Mater Process Technol. 2019;264:155–171.
  • Zhang H, Zhu H, Nie X, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater. 2017;134:6–10.
  • Zakharov VV. Effect of scandium on the structure and properties of aluminum alloys. Met Sci Heat Treat. 2003;45(7):246–253.
  • Wang P, Deng L, Prashanth KG, et al. Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures. J Alloys Compd. 2018;735:2263–2266.
  • Li Y, Yu S, Chen Y, et al. Wire and arc additive manufacturing of aluminium alloy lattice structure. J Manuf Process. 2020;50:510–519.
  • Xiong J, Li Y, Li R, et al. Influences of process parameters on surface roughness of multi-layer single-pass thin-walled parts in GMAW-based additive manufacturing. J Mater Process Technol. 2018;252:128–136.
  • Qi Z, Qi B, Cong B, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminium alloy components: As-deposited and post heat-treated. J Manuf Process. 2019;40:27–36.
  • Tabernero I, Paskual A, Álvarez P, et al. Study on Arc welding processes for high deposition rate additive manufacturing. Procedia CIRP. 2018;68:358–362.
  • Ríos S, Colegrove PA, Williams SW. Metal transfer modes in plasma wire + Arc additive manufacture. J Mater Process Technol. 2019;264:45–54.
  • Rodriguez N, Vázquez L, Huarte I, et al. Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Weld World. 2018;62(5):1083–1096.
  • Zhang C, Li Y, Gao M, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A. 2018;711:415–423.
  • Fang X, Zhang L, Li H, et al. Microstructure evolution and Mechanical Behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process. Materials. 2018;11(5):812.
  • Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process. Appl Sci. 2017;7(3):275.
  • Gu J, Ding J, Williams SW, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater Sci Eng A. 2016;651:18–26.
  • Zhang C, Gao M, Zeng X. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminium alloy. J Mater Process Technol. 2019;271:85–92.
  • Hönnige JR, Colegrove PA, Ganguly S, et al. Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling. Addit Manuf. 2018;22:775–783.
  • Tan H, Hao D, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders. Mater Lett. 2018;214:123–126.
  • Ullah R, Lu J, Sang L, et al. In-situ tensile deformation behavior of as-built laser direct metal deposited Ti–6Al–4 V alloy at 200°C. J Alloys Compd. 2020;817:152781.
  • Riveiro A, Mejías A, Lusquiños F, et al. Optimization of laser cladding for Al coating production. Phys Procedia. 2013;41:327–334.
  • Gu T, Chen B, Tan C, et al. Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy. Opt Laser Technol. 2019;112:140–150.
  • Karen MB, Taminger RAH. Characterization of 2219 aluminium produced by electron beam freeform fabrication. 13th Solid Freeform Fabrication symposium; 2002 Austin, TX, USA.
  • Brice C, Shenoy R, Kral M, et al. Precipitation behavior of aluminium alloy 2139 fabricated using additive manufacturing. Mater Sci Eng A - Struct Mater Prop Microstruct Process. 2015;648:9–14.
  • Brice CA, Tayon WA, Newman JA, et al. Effect of compositional changes on microstructure in additively manufactured aluminium alloy 2139. Mater Charact. 2018;143:50–58.
  • Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf. 2018;19:1–20.
  • Larsson M, Lindhe U, Ola H. Rapid manufacturing with electron beam melting (EBM)—A manufacturing revolution?. Solid Freeform Fabrication Symposium; 2003: p. 438–443.
  • Chen YX, Wang XJ, Chen SB. The effect of electron beam energy density on temperature field for electron beam melting. Adv Mat Res. 2014;900:631–638.
  • Denis C, Ola H, Harvey W. Characterization of H13 steel produced via electron beam melting. Rapid Prototyp J. 2004;10(1):35–41.
  • Koptioug A, Rännar LE, Bäckström M, et al. New metallurgy of additive manufacturing in metal: experiences from the Material and process development with electron beam melting Technology (EBM). Mater Sci Forum. 2017;879:996–1001.
  • Lu W, Lin F, Han J, et al. Scan strategy in electron beam selective melting. Tsinghua Sci Technol. 2009;14(S1):120–126.
  • Qi HB, Yan YN, Lin F, et al. Scanning method of filling lines in electron beam selective melting. Proceedings of the institution of mechanical engineers. J Eng Manuf 2007;221(12):1685–1694.
  • Sun S, Zheng L, Peng H, et al. Microstructure and mechanical properties of Al-Fe-V-Si aluminium alloy produced by electron beam melting. Mater Sci Eng A. 2016;659:207–214.
  • Tomus D, Qian M, Brice CA, et al. Electron beam processing of Al–2Sc alloy for enhanced precipitation hardening. Scr Mater. 2010;63(2):151–154.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Yu Y, Kenevisi MS, Yan W, et al. Modeling precipitation process of Al-Cu alloy in electron beam selective melting with a 3D cellular automaton model. Addit Manuf. 2020;36:101423.
  • Mertens AI, Delahaye J, Lecomte-Beckers J. Fusion-Based additive manufacturing for processing aluminum alloys: state-of-the-Art and challenges. Adv Eng Mater. 2017;19(8):1700003.
  • Ion JC. Chapter 5 - Engineering materials. In: Laser processing of engineering materials. Oxford: Butterworth-Heinemann; 2005. p. 139–177.
  • Aboulkhair NT, Maskery I, Ashcroft I, et al. The role of powder properties on the processability of aluminium alloys in selective laser melting. Lasers in Manufacturing Conference; 2015: Wissenschaftliche Gesellschaft Lasertechnik e.V.
  • Ryan EM, Sabin TJ, Watts JF, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol. 2018;262:577–584.
  • Gu J, Yang S, Gao M, et al. Micropore evolution in additively manufactured aluminium alloys under heat treatment and inter-layer rolling. Mater Des. 2020;186:108288.
  • Martukanitz RP, Michnuk PR. Sources of porosity in gas metal arc welding of aluminium. Aluminium Dusseldorf. 1982;58(5):276–279.
  • Boeira AP, Ferreira IL, Garcia A. Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast Al–Cu alloys. Mater Des. 2009;30(6):2090–2098.
  • Sola A, Nouri A. Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion. J Adv Manuf Process. 2019;1(3):e10021.
  • Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol. 2018;34(8):895–916.
  • Gu JL, et al. The Influence of wire properties on the quality and performance of wire + Arc additive manufactured aluminium parts. Adv Mat Res. 2015;1081:210–214.
  • Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: A review. Chin J Mech Eng. 2017;30(3):515–527.
  • Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of inconel 625 fabricated by selective laser melting. Addit Manuf. 2018;24:419–431.
  • Wang L, WQ, He W, et al. Influence of powder characteristic and process parameters on SLM formability. J Huazhong Univ Sci Technolog Med Sci. 2012;40(6):20–23.
  • Martin AA, Calta NP, Hammons JA, et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging. Mater Today Adv. 2019;1:100002.
  • McFalls TA. The effect of hydrogen on gas porosity in laser powder Bed fusion of AlSi10Mg, In Mechanical engineering. University of Tennessee; 2018.
  • Bœllinghaus T. Hot cracking phenomena in welds II. Berlin: Springer; 2008; p. 1 online resource (ix, 467 p.).
  • Aboulkhair NT, Everitt NM, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;(1-4):77–86.
  • Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des. 2015;65:417–424.
  • Weingarten C, Buchbinder D, Pirch N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol. 2015;221:112–120.
  • Ghaini FM, Sheikhi M, Torkamany MJ, et al. The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. Mater Sci Eng A. 2009;519(1):167–171.
  • Cheng CM, Chou CP, Lee IK, et al. Hot cracking of welds on heat treatable aluminium alloys. Sci Technol Weld Joining. 2005;10(3):344–352.
  • Sheikhi M, Ghaini FM, Assadi H. Prediction of solidification cracking in pulsed laser welding of 2024 aluminium alloy. Acta Mater. 2015;82:491–502.
  • Welding kaiser aluminium. 1st ed. Kaiser Aluminium & Chemical Scales, Inc; 1984.
  • Kou S. A criterion for cracking during solidification. Acta Mater. 2015;88:366–374.
  • Liu J, Kou S. Crack susceptibility of binary aluminium alloys during solidification. Acta Mater. 2016;110:84–94.
  • Liu J, Kou S. Susceptibility of ternary aluminium alloys to cracking during solidification. Acta Mater. 2017;125:513–523.
  • Pauly S, Wang P, Kühn U, et al. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Addit Manuf. 2018;22:753–757.
  • Liu R-p, Dong Z-j, Pan Y-m. Solidification crack susceptibility of aluminium alloy weld metals. T Nonferr Metal Soc. 2006;16(1):110–116.
  • Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater Des. 2017;135:257–266.
  • Mukherjee T, Zuback JS, De A, et al. Printability of alloys for additive manufacturing. Sci Rep. 2016;6.
  • Zhang J, Song B, Wei Q, et al. A review of selective laser melting of aluminium alloys: processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270–284.
  • Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. J Mater Process Technol. 2011;211(2):275–284.
  • Olakanmi E, C.R, Dalgarno K. Spheroidisation and oxide disruption phenomena in direct selective laser melting (SLM) of pre-alloyed Al-Mg and Al-Si powders. TMS Annual Meeting; 2009 San Francisco, California, USA: John Wiley & Sons.
  • Yang T, Liu T, Liao W, et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol. 2019;266:26–36.
  • Maamoun AH, Xue Y, Elbestawi M, et al. Effect of selective laser melting process parameters on the quality of Al alloy parts: powder characterization, density, surface roughness, and dimensional accuracy. Materials. 2018;11(12):2343.
  • Gusarov AV, Smurov I. Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys Procedia. 2010;5:381–394.
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360.
  • Wu WH, Yang YQ, Wang D. Balling phenomenon in selective laser melting process. Huanan Ligong Daxue Xuebao/J South China Univ Technol (Natural Science). 2010;38(5):110–115.
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224.
  • Liu Y, Yang Y, Mai S, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des. 2015;87:797–806.
  • Tao X, Yao Z, Zhang S, et al. Effect of beam power on the distribution statues of aligned TiBw and tensile behavior of trace boron-modified Ti6Al4 V alloy produced by electron beam freeform fabrication. Vacuum. 2020;172:109070.
  • Hong M-H, Min BK, Kwon T-Y. The Influence of process parameters on the surface roughness of a 3D-printed Co–Cr dental alloy produced via selective laser melting. Appl Sci. 2016;6(12):401.
  • Aboulkhair NT, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:100578.
  • Gunenthiram V, Peyre P, Schneider M, et al. Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. J Laser Appl. 2017;29(2):022303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.