142
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of zirconium addition on microstructures and thermal conductivities of carbon/copper composites

ORCID Icon &
Pages 1090-1095 | Received 29 Jan 2015, Accepted 24 Sep 2021, Published online: 18 Oct 2021

References

  • Atomic and Plasma–Material Interaction Data for Fusion 15. IAEA; 2012.
  • Atomic and Plasma–Material Interaction Data for Fusion 12. IAEA; 2003.
  • Atomic and Plasma–Material Interaction Data for Fusion 5. IAEA; 1994.
  • Oku T. Possible applications of nanomaterials for nuclear fusion devices. Energy Harvest Syst. 2018;5:11–27.
  • Oku T, Hiraoka T, Kuroda K. Improvement of thermal conductivity of carbon materials due to addition of metal particles. J Nucl Sci Technol. 1995;32:816–818.
  • Li Y, Bai P, Li Y. Fabrication and fibre matrix interface characteristics of Cu/C(Fe) composite. Sci Sinter. 2009;41:193–198.
  • Oku T, Kurumada A, Sogabe T, et al. Effects of titanium impregnation on the thermal conductivity of carbon/copper composite materials. J Nucl Mater. 1998;257:59–66.
  • Oku T, Oku T. Effects of titanium addition on the microstructure of carbon/copper composite materials. Solid State Commun. 2007;141:132–135.
  • Liao Q, Wei W, Zuo H, et al. Interfacial bonding enhancement and properties improvement of carbon/copper composites based on nickel doping. Compos Interfaces. 2021;28:637–649.
  • Koppad PG, Kashyap KT, Shrathinth V, et al. Microstructure and microhardness of carbon nanotube reinforced copper nanocomposites. Mater Sci Technol. 2013;29:605–609.
  • Song JL, Zhao YL, He XJ, et al. Microstructure and properties of ultrasonic assisted copper coated graphite foams. Mater Sci Technol. 2013;29:1389–1393.
  • Rashad M, Pan F, Asif M, et al. Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids. Mater Sci Technol. 2015;31:1452–1461.
  • Zhao C, Gao JZ. Thermal conductivity of diamond/Ag composites with chromium carbide coated diamonds for the building materials of high power modules. Mater Sci Technol. 2014;30:800–805.
  • de Boer FR, Boom R, Mattens WCM, et al. Cohesion in metals, transition metal alloys. North-Holland Publishing Co. (Amsterdam); 1988.
  • Zhang JY, Liu G, Sun J. Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars. Sci Rep. 2013;3:2324.
  • Oku T. Direct structure analysis of advanced nanomaterials by high-resolution electron microscopy. Nanotechnol Rev. 2012;1:389–425.
  • Oku T. High-resolution electron microscopy and electron diffraction of perovskite-type superconducting copper oxides. Nanotechnol Rev. 2014;3:413–444.
  • Sviridova TA, D’yakonova NP, Shelekhov EV, et al. Change of crystal structure of Zr2Cu after a treatment in ball mill and annealing. Poverkhn: Fiz Khim Mekh. 2004;10:28–32.
  • Nakamura K, Yashima M. Crystal structure of NaCl-type transition metal monocarbides MC (M = V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study. Mater Sci Eng B. 2008;148:69–72.
  • Massalski TB. Binary alloy phase diagrams. ASM International (Materials Park, Ohio, USA); 1990.
  • Okamoto H. C-Zr (carbon-zirconium). J Phase Equilib. 1996;17:162.
  • Lundin CE, McPherson DJ, Hansen M. System zirconium-copper. Trans AIME. 1953;197:273–278.
  • Perry AJ, Hugi W. A contribution to the copper-rich copper-zirconium phase diagram. J Inst Met. 1972;100:378–380.
  • Bsenko L. Crystallographic data for intermediate phases in the copper-zirconium and copper-hafnium systems. J. Less-Common Met. 1975;40:365–366.
  • Kuznetsov GM, Fedorov VN, Rodnyanskaya AL, et al. Investigation of phase diagram of the Cu-Zr system. Sov Non-Ferrous Met Res. 1978;6:267–268.
  • Glimois JL, Forey P, Feron JL. Structural and physical studies of copper-rich alloys in the Cu-Zr system. J Less-Common Met. 1985;113:213–224.
  • Nevitt MV, Downey JW. A family of intermediate phases having the Si2Mo-type structure. Trans Metall Soc AIME. 1962;224:195–196.
  • Hossain D, Harris IR, Barraclough KG. A study of ZrCo and related ternary phases represented by the general formula, Zr50Co50-xNix. J Less-Common Met. 1974;37:35–57.
  • Glimois JL, Forey P, Féron JL, et al. Structural investigations of the pseudo-binary compounds Ni10-xCuxZr7. J Less-Common Met. 1981;78:45–50.
  • Zhou SH, Napolitano RE. Phase stability for the Cu–Zr system: first-principles, experiments and solution-based modeling. Acta Mater. 2010;58:2186–2196.
  • Uekubo M, Oku T, Nii K, et al. WNx diffusion barriers between Si and Cu. Thin Solid Films. 1996;286:170–175.
  • Oku T, Furumai M, Uchibori CJ, et al. Formation of WSi-based ohmic contacts to n-type GaAs. Thin Solid Films. 1997;300:218–222.
  • Zhao Y-W, Wang Y-J, Zhou Y, et al. Ternary phase ZrxCuyCz in reactively infiltrated ZrC/W composite. J Am Ceram Soc. 2011;94:3178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.