517
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Deformation-induced phase transformation and twinning in Fe and Fe–C alloys

, , , & ORCID Icon
Pages 1246-1256 | Received 13 Jun 2021, Accepted 09 Oct 2021, Published online: 26 Oct 2021

References

  • Porter DA, Easterling KE. Phase transformations in metals and alloys. 2nd ed. London: Chapman and Hall; 1992.
  • Wang B, Urbassek HM. Computer simulation of strain-induced phase transformations in thin Fe films. Model Simul Mater Sci Eng. 2013;24(8):2007.
  • Ou X, Song M. Deformation mechanisms of mechanically induced phase transformations in iron. Comput Mater Sci. 2019;162:12–20.
  • Wang SJ, Sui ML, Chen YT, et al. Microstructural fingerprints of phase transitions in shock-loaded iron. Sci Rep. 2013;3:1086.
  • Nishiyama Z. X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body-centred cubic. Sci Rep Tohoku Univ. 1934;23:637–664.
  • Kurdjumow G, Sachs G. Über den mechanismus der stahlhärtung. Zeitschrift für Physik. 1930;64(5):325–343.
  • Pous-Romero H, Bhadeshia H. Coalesced martensite in pressure vessel steels. J Press Vessel Technol. 2014;136(3):031402.
  • Hilkhuijsen P, Geijselaers HJM, Bor TC, et al. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of γ-texture. Mater Sci Eng A. 2013;573:100–105.
  • Humbert M, Petit B, Bolle B, et al. Analysis of the γ–ε–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at −60°C. Mater Sci Eng A. 2007;454–455:508–517.
  • Kim Y, Ahn T, Suh D, et al. Variant selection during mechanically induced martensitic transformation of metastable austenite by nanoindentation. Scripta Mater. 2015;104:13–16.
  • Li S, Ding X, Deng J, et al. Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys Rev B. 2010;82(20):205435.
  • Sun H, Wang Y, Wang Z, et al. Twinned substructure in lath martensite of water quenched Fe-0.2%C and Fe-0.8%C steels. J Mater Sci Technol. 2020;49:126–132.
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39(1):1–157.
  • Healy CJ, Ackland GJ. Molecular dynamics simulations of compression–tension asymmetry in plasticity of Fe nanopillars. Acta Mater. 2014;70:105–112.
  • Wayman CM. Introduction to the crystallography of martensitic transformation. New York: Macmillan; 1964.
  • Cayron C. The transformation matrices (distortion, orientation, correspondence), their continuous forms and their variants. Acta Crystallogr Sect A. 2019;75(3):411–437.
  • Cayron C. Angular distortive matrices of phase transitions in the fcc–bcc–hcp system. Acta Mater. 2016;111:417–441.
  • Meiser J, Urbassek HM. Martensitic transformation of pure iron at a grain boundary: atomistic evidence for a two-step Kurdjumov-Sachs–Pitsch pathway. AIP Adv. 2016;6(8):085017.
  • Meiser J, Urbassek HM. Dislocations help initiate the α–γ phase transformation in iron – an atomistic study. Metals. 2019;9(1):90.
  • Lu Y, Yu H, Sisson RD. The effect f carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys. Mater Sci Eng A. 2017;700:592–597.
  • Ji Y, Liu Z, Ren H. Morphology and formation mechanism of martensite in steels with different carbon content. Adv Mat Res. 2011;201–203:1612–1618.
  • de la Concepción VL, Lorusso HN, Svoboda HG. Effect of carbon content on microstructure and mechanical properties of dual phase steels. Proc Mater Sci. 2015;8:1047–1056.
  • Gao G, Gao B, Gui X, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06–0.42%wt%C). Mater Sci Eng A. 2019;753:1–10.
  • Poorganji B, Miyamoto G, Maki T, et al. Formation of ultrafine grained ferrite by warm deformation of lath martensite in low-alloy steels with different carbon content. Scripta Mater. 2008;59:279–281.
  • Seol J, Jung JE, Jang YW, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ϵ-martensite dual-phase Fe–Mn–C steels. Acta Mater. 2013;61(2):558–578.
  • Meyer R, Entel P. Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations. Phys Rev B. 1998;57(9):5140–5147.
  • Johnson RA, Dienes GJ, Damask AC. Calculations of the energy and migration characteristics of carbon and nitrogen in α-iron and vanadium. Acta Metall. 1964;12(11):1215–1224.
  • Tersoff J. Modelling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568.
  • Sak-Saracino E, Urbassek HM, et al. Free energies of austenite and martensite Fe–C alloys: an atomistic study. Philos Mag A. 2014;94(9):933–945.
  • Karewar S, Sietsma J, Santofimia M. Effect of C on the martensitic transformation in Fe-C alloys in the presence of pre-existing defects: A molecular dynamics study. Crystals. 2019;9(2):99.
  • Wang B, Urbassek HM. Phase transitions in an Fe system containing a bcc/fcc phase boundary: An atomistic study. Phys Rev B. 2013;87(10):104108.
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2012;20(4):015012.
  • Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng. 2012;20(4):045021.
  • Ou X, Sietsma J, Santofimia MJ. Coalescence of martensite under uniaxial tension of iron crystallites by atomistic simulations. Mater Sci Technol. 2020;36(11):1191–1199.
  • Gunkelmann N, Ledbetter H, Urbassek HM. Experimental and atomistic study of the elastic properties of α′ Fe–C martensite. Acta Mater. 2012;60(12):4901–4907.
  • Burgers WG. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica. 1934;1(7):561–586.
  • Gunkelmann N, Tramontina DR, Bringa EM, et al. Morphological changes in polycrystalline Fe after compression and release. J Appl Phys. 2015;117(8):085901.
  • Kadau K, Germann TC, Lomdahl PS, et al. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys Rev B. 2005;72(6):064120.
  • Pitsch W. The martensite transformation in thin foils of iron-nitrogen alloys. Philos Mag A. 1959;4(41):577–584.
  • Koumatos K, Muehlemann A. A theoretical investigation of orientation relationships and transformation strains in steels. Acta Crystallogr Sect A. 2017;73(2):115–123.
  • Chang L, Zhou C, Liu H, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations. J Mater Sci Technol. 2018;34(5):864–877.
  • Nan X, Wang H, Zhang L, et al. Calculation of Schmid factors in magnesium: analysis of deformation behaviors. Scripta Mater. 2012;67(5):443–446.
  • Li J, Fang Q, Liu B, et al. Transformation induced softening and plasticity in high entropy alloys. Acta Mater. 2018;147:35–41.
  • Huang ZW, Jin SB, Zhou H, et al. Evolution of twinning systems and variants during sequential twinning in cryo-rolled Titanium. Int J Plast. 2019;112:52–67.
  • Adriana EC, Lucia MR, Andreas L, et al. Effect of ausforming on the anisotropy of low temperature bainitic transformation. Mater Charact. 2018;145:371–380.
  • Chalapathi D, Sivaprasad PV, Kanjarla AK. Role of deformation twinning and second phase on the texture evolution in a duplex stainless steel during cold rolling: experimental and modelling study. Mater Sci Eng A. 2020;780:139155.
  • Pak J, Dong WS, Bhadeshia H. Promoting the coalescence of bainite platelets. Scripta Mater. 2012;66(11):951–953.
  • Paramatmuni C, Zheng Z, Rainforth WM, et al. Twin nucleation and variant selection in Mg alloys: An integrated crystal plasticity modelling and experimental approach. Int J Plast. 2020;135:102778.
  • Zhang X, Wang W, Sun J. Formation of {332}〈113〉β twins from parent {130}〈310〉α″ plastic twins in a full α″ Ti-Nb alloy by annealing. Mater Charact. 2018;145:724–729.
  • Castany P, Yang Y, Bertrand E, et al. Reversion of a parent {130}〈310〉α'‘ martensitic twinning system at the origin of {332}〈113〉β twins observed in metastable β Titanium alloys. Phys Rev Lett. 2016;117(24):245501.
  • Gao Y, Zhang Y, Wang Y. Determination of twinning path from broken symmetry: A revisit to deformation twinning in bcc metals. Acta Mater. 2020;196:280–294.
  • Wu JY, Nagao S, He JY, et al. Role of five-fold twin boundary on the enhanced mechanical properties of fcc Fe nanowires. Nano Lett. 2011;11(12):5264–5273.
  • Zhou H, Qu S, Yang W. Toughening by nano-scaled twin boundaries in nanocrystals. Model Simul Mater Sci Eng. 2010;18(6):065002.
  • Song SW, Lee JH, Lee T, et al. Effect of the amount and temperature of prestrain on tensile and low-cycle fatigue properties of Fe-17Mn-0.5C TRIP/TWIP steel. Mater Sci Eng A. 2017;696:493–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.