243
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Enhanced SCC resistance of 7056 aluminium alloy by Y and Si additions

ORCID Icon, , , , &
Pages 1421-1434 | Received 31 Mar 2021, Accepted 28 Nov 2021, Published online: 21 Dec 2021

References

  • Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862–871.
  • Eivani AR, Ahmed H, Zhou J, et al. An experimental and theoretical investigation of the formation of Zr-containing dispersions in Al–4.5Zn–1Mg aluminium alloy. Mater Sci Eng A. 2010;527:2418–2430.
  • Li WB, Pan QL, Xiao YP, et al. Microstructural evolution of ultra-high strength Al–Zn–Cu–Mg–Zr alloy containing Sc during homogenization. Trans Nonferr Metal Soc. 2011;21:2127–2133.
  • Deng Y, Yin ZM, Cong FG. Intermetallic phase evolution of 7050 aluminium alloy during homogenization. Intermetallics. 2012;26:114–121.
  • Knight SP, Pohl K, Holroyd NJH, et al. Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys. Corros Sci. 2015;98:50–62.
  • Sun XY, Zhang B, Lin HQ, et al. Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al–Zn–Mg alloy. Corros Sci. 2014;79:1–4.
  • Knight SP, Birbilis N, Muddle BC, et al. Correlations between intergranular stress corrosion cracking, grain boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys. Corros Sci. 2010;52:4073–4080.
  • Holroyd NJH. Environment-induced cracking of high-strength aluminium alloys. In: RP Gangloff, MB Ives, editor. Proceedings of environment-induced cracking of metals 1988. Houston: NACE; 1990. p. 311–345.
  • Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminium alloys an experimental survey and discussion. J Electrochem Soc. 2005;152:B140–B151.
  • Huang LP, Chen KH, Li S, et al. Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy. Scr Mater. 2007;56: 305–308.
  • Holroyd NJH, Scamans GM. Crack propagation during sustained-load cracking of Al–Zn–Mg–Cu aluminium alloys exposed to moist air or distilled water. Metall Mater Trans A. 2011;42:3979–3998.
  • Cina BM. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking, US Patent 3856584, 24 December 1974.
  • Peng G, Chen K, Chen S, et al. Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2011;528:4014–4018.
  • Jiang JT, Xiao WQ, Yang L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2014;605:167–175.
  • Jiang D, Liu Y, Liang S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of AlZnMgCu alloy. J Alloy Compd. 2016;681:57–65.
  • Holroyd NJH, Scamans GM. Stress corrosion cracking in Al–Zn–Mg–Cu aluminium alloys in saline environments. Metall Mater Trans A. 2013;44:1230–1253.
  • Lin JC, Liao HL, Jehng WD, et al. Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution. Corros Sci. 2006;48:3139–3156.
  • Yang JG, Ou BL. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7050 Al-alloy. Scand J Metall. 2001;30:158–167.
  • Ou BL, Yang JG, Wei MY. Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 alloys. Metall Mater Trans A. 2007;38:1760–1773.
  • Yuan D, Chen K, Chen S, et al. Enhancing stress corrosion cracking resistance of low Cu-containing Al–Zn–Mg–Cu alloys by slow quench rate. Mater Des. 2019;164:107558.
  • Staley JT. Durham, Method and process of non-isothermal aging for aluminium alloys, US Patent 0267113, 22 November 2007.
  • Liu Y, Jiang DM, Li WJ. The effect of multistage ageing on microstructure and mechanical properties of 7050 alloy. J Alloy Compd. 2016;671:408–418.
  • Feng D, Zhang XM, Liu SD, et al. Non-isothermal “retrogression and re-ageing” treatment schedule for AA7055 thick plate. Mater Des. 2014;60:208–217.
  • Liu Y, Jiang D, Li B, et al. Effect of cooling aging on microstructure and mechanical properties of an Al–Zn–Mg–Cu alloy. Mater Des. 2014;57:79–86.
  • Liu Y, Jiang D, Li B, et al. Heating aging behavior of Al–8.35Zn–2.5Mg–2.25Cu alloy. Mater Des. 2014;60:116–124.
  • Peng X, Guo Q, Liang X, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2017;688:146–154.
  • Wu YL, Froes FH, Li CG, et al. Microalloying of Sc, Ni, and Ce in advanced Al–Zn–Mg–Cu alloy. Metall Mater Trans A. 1999;30:1017–1024.
  • Gao T, Zhang Y, Liu X. Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–Zr alloy. Mater Sci Eng A. 2014;598:293–298.
  • Davydov VG, Rostova TD, Zakharov VV, et al. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater Sci Eng A. 2000;280:30–36.
  • Fang HC, Chao H, Chen KH. Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys. Mater Sci Eng A. 2014;610:10–16.
  • Monachon C, Krug ME, Seidman DN, et al. Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (at.%). Acta Mater. 2011;59:3398–3409.
  • Peng G, Chen K, Fang H, et al. Effect of Cr and Yb additions on microstructure and properties of low copper Al–Zn–Mg–Cu–Zr alloy. Mater Des. 2012;36:279–283.
  • Fang HC, Luo FH, Chen KH. Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al–Zn–Mg–Cu–Zr–Yb–Cr alloy. Mater Sci Eng A. 2017;684:480–490.
  • Li B, Wang HW, Jie JC, et al. Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Mater Des. 2011;32:1617–1622.
  • Ding WW, Zhao XY, Chen TL, et al. Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. J Alloy Compd. 2020;830:154685.
  • Zhang XG, Mei FQ, Zhang HY, et al. Effects of Gd and Y additions on microstructure and properties of Al–Zn–Mg–Cu–Zr alloy. Mater Sci Eng A. 2012;552:230–235.
  • Yan P, Zhang Z, Zhou C, et al. Enhancement of corrosion resistance of a high Zn–yttrium aluminium alloy. J Alloy Compd. 2020;817:152774.
  • Nakamura F, Hirosawa S, Sato T. Effects of Si and Ge addition on the Al3Zr precipitates in an Al–0.6 mass.%Zr alloy. In: JF Nie, AJ Morton, BC Muddle, editor. Proceedings of the 9th international conference on aluminium alloys 2004. Institute of Materials Engineering Australasia Ltd; 2004. p. 582–587.
  • Booth-Morrison C, Mao Z, Diaz M, et al. Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater. 2012;60:4740–4752.
  • Fang L, Zhang Z, Fang HC, et al. Effects of Si additions on the precipitation evolution of dilute Al–Zr–Yb alloys. Mater Charact. 2019;152:130–133.
  • Vo NQ, Seidman DN, Dunand DC. Effect of Si micro-addition on creep resistance of a dilute Al–Sc–Zr–Er alloy. Mater Sci Eng A. 2018;734:27–33.
  • Vo NQ, Dunand DC, Seidman DN. Role of silicon in the precipitation kinetics of dilute Al–Sc–Er–Zr alloys. Mater Sci Eng A. 2016;677:485–495.
  • She H, Chu W, Shu D, et al. Effects of silicon content on microstructure and stress corrosion cracking resistance of 7050 aluminum alloy. Trans Nonferr Metal Soc. 2014;24:2307–2313.
  • GB/T 7998-2005. Test method for inter-granular corrosion of aluminium alloys. National Standard of China.
  • GB12445. 1–90. High strength alloys-method of stress corrosion test for double cantilever beam (DCB) specimens, National Standard of China.
  • Crist B. BE Lookup Table for Signals from Elements and Common Chemical species. In Handbook of monochromatic XPS spectra, the elements and native oxides. New York: John Wiley: 1999 vol. 1. Available at: http://www.xpsdata.com/XI_BE_Lookup_table.pdf
  • Hinton BRW, Arnott DR, Ryan NE. Inhibition of aluminum alloy corrosion by cerous cations. Met Forum. 1984;7:211–217.
  • Varela F, Hill J, Forsyth M, et al. The inhibiting effects of cerium diphenyl phosphate on the corrosion and stress corrosion of 7075 aluminium alloy. 49th annual Conference of the Australasian Corrosion Association 2009: Corrosion and Prevention 2009;Australasian Corrosion Association; 2009. p. 804–814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.