887
Views
2
CrossRef citations to date
0
Altmetric
Literature Review Prize 2022 Finalist

Quenching and partitioning (Q&P) process: a critical review of the competing reactions

Pages 663-675 | Received 03 Dec 2021, Accepted 19 Mar 2022, Published online: 10 May 2022

References

  • Matlock DK, Speer JG, De Moor E, et al. Recent developments in advanced high strength sheet steels for automotive applications: an overview. JESTECH. 2012;15:1–12.
  • Speer JG, De Moor E, Findley KO, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel. Metall Mater Trans A. 2011;42:3591–3601.
  • Matlock DK, Speer JG. Third generation of AHSS: microstructure design concepts. In: Halder A, Suwas S, Bhattacharjee D, editors. Microstructure and texture in steels and other materials. London: Springer; 2008. p. 185–205.
  • Kwon O, Lee K, Kim G, et al. New trends in advanced high strength steel developments for automotive application. Mater Sci Forum. 2010;638–642:136–141.
  • Yan S, Liu X, Liu WJ, et al. Comparison on mechanical properties and microstructure of a C-Mn-Si steel treated by quenching and partitioning (Q&P) and quenching and tempering (Q&T) processes. Mater Sci Eng A. 2015;620:58–66.
  • Gui X, Gao G, Guo H, et al. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel. Mater Sci Eng A. 2017;684:598–605.
  • Speer J, Matlock DK, De Cooman BC, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–2622.
  • Speer JG, Edmonds DV, Rizzo FC, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr Opin Solid State Mater Sci. 2004;8:219–237.
  • Streicher AM, Speer JG, Matlock DK, et al. Quenching and partitioning response of a Si-added TRIP sheet steel. In: Speer JG, editor. Proc Int Conf Adv high-strength sheet steels automot appl. Warrendale (PA): AIST; 2004. p. 51–62.
  • Matlock DK, Brautigam VE, Speer JG. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel. Mater Sci Forum. 2003;426–432:1089–1094.
  • Thomas GA, Speer JG, Matlock DK. Quenched and partitioned microstructures produced via Gleeble simulations of hot-strip mill cooling practices. Metall Mater Trans A. 2011;42:3652–3659.
  • Seo EJ, Cho L, De Cooman BC. Application of quenching and partitioning (Q&P) processing to press hardening steel. Metall Mater Trans A. 2014;45A:4022–4037.
  • Liu H, Jin X, Dong H, et al. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process. Mater Charact. 2011;62:223–227.
  • Liu H, Lu X, Jin X, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process. Scr Mater. 2011;64:749–752.
  • Edmonds DV, He K, Rizzo FC, et al. Quenching and partitioning martensite - a novel steel heat treatment. Mater Sci Eng A. 2006;438–440:25–34.
  • Matas S, Hehemann RF. Retained austenite and the tempering of martensite. Nature. 1960;187:685–686.
  • Seo EJ, Cho L, Estrin Y, et al. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016;113:124–139.
  • Li HY, Lu XW, Li WJ, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process. Metall Mater Trans A. 2010;41A:1284–1300.
  • De Moor E, Lacroix S, Clarke AJ, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall Mater Trans A. 2008;39:2586–2595.
  • Speer JG, Rizzo FC, Matlock DK, et al. Proceedings of 59th Annual Congress of ABM; Sao Paulo; 2004. p. 4824–4836.
  • Bigg TD, Edmonds DV, Eardley ES. Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel. J Alloys Compd. 2013;577S:S695–S698.
  • Bigg TD, Matlock DK, Speer JG, et al. Dynamics of the quenching and partitioning (Q&P) process. Solid State Phenom. 2011;172–174:827–832.
  • Choi KS, Zhu Z, Sun X, et al. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy. Scr Mater. 2015;104:79–82.
  • Toji Y, Miyamoto G, Raabe D. Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation. Acta Mater. 2015;86:137–147.
  • Toji Y, Matsuda H, Herbig M, et al. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 2014;65:215–228.
  • Thomas GA, Danoix F, Speer JG, et al. Carbon atom re-distribution during quenching and partitioning. ISIJ Int. 2014;54:2900–2906.
  • Hillert M, Årgen J. On the definitions of paraequilibrium and orthoequilibrium. Scr Mater. 2004;50:697–699.
  • Speer JG, Matlock DK, De Cooman BC, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. Ågren, Scripta Materialia, 50, 697-9 (2004). Scr Mater. 2005;52:83–85.
  • Hillert M, Årgen J. Reply to comments on “On the definition of paraequilibrium and orthoequilibrium”. Scr Mater. 2005;52:87–88.
  • De Moor E, Speer JG. Bainitic and quenching and partitioning steels. In: Rana R, Singh SB, editors. Automot steels des metall process appl. Duxford, UK: Woodhead Publishing; 2017. p. 289–316.
  • Speer JG, Matlock DK, Streicher AM, et al. Quenching and partitioning: a fundamentally new process to create high strength TRIP sheet microstructures. In: Damm EB, Merwin MJ, editors. Austenite form decompos. Warrendale (PA): TMS/ISS; 2003. p. 505–522.
  • Speer JG. Phase transformations in quenched and partitioned steels. In: Pereloma E, Edmonds DV, editors. Phase transform steels diffus transform high strength steels, model adv anal tech. Vol. 2. Cambridge, UK: Woodhead Publishing Limited; 2012. p. 247–270.
  • HajyAkbary F, Sietsma J, Miyamoto G, et al. Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel. Acta Mater. 2016;104:72–83.
  • Clarke AJ, Speer JG, Miller MK, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment. Acta Mater. 2008;56:16–22.
  • Pierce DT, Coughlin DR, Williamson DL, et al. Characterization of transition carbides in quench and partitioned steel microstructures by Mössbauer spectroscopy and complementary techniques. Acta Mater. 2015;90:417–430.
  • Thomas GA, De Moor E, Speer JG, et al. In: De Moor E, Jun HJ, Speer JG, editors. Tensile properties obtained by Q&P processing of Mn-Ni steels with room temperature quench temperatures, Proceedings of the International Symposium on New Developments in Advanced High-strength Sheet Steels. Warrendale (PA): AIST; 2013. p. 153–165.
  • Gallagher MF, Speer JG, Matlock DK, et al. Microstructure development in TRIP-sheet steels containing Si, Al, and P. In: Proc 44th Mech Work Steel Process Conf; Warrendale (PA): Iron and Steel Society; 2002. p. 153–172.
  • Mahieu J, Claessens S, De Cooman BC. Galvanizability of high-strength steels for automotive applications. Metall Mater Trans A. 2001;32:2905–2908.
  • Grajcar A, Kuziak R, Zalecki W. Third generation of AHSS with increased fraction of retained austenite for the automotive industry. Arch Civ Mech Eng. 2012;12:334–341.
  • Kumar S, Singh SB. , Understanding of the effect of quenching and partitioning (Q&P) parameters on the stabilization of austenite, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India, Unpublished research. 2021.
  • Clarke AJ, Miller MK, Field RD, et al. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel. Acta Mater. 2014;77:17–27.
  • Speer JG, De Moor E, Clarke AJ. Critical assessment 7: quenching and partitioning. Mater Sci Technol. 2015;31:3–9.
  • Seo EJ, Cho L, De Cooman BC. Kinetics of the partitioning of carbon and substitutional alloying elements during quenching and partitioning (Q&P) processing of medium Mn steel. Acta Mater. 2016;107:354–365.
  • Seo EJ, Cho L, De Cooman BC. Modified methodology for the quench temperature selection in quenching and partitioning (Q&P) processing of steels. Metall Mater Trans A. 2016;47A:3797–3802.
  • Kumar S, Singh SB. Evolution of microstructure during the “quenching and partitioning (Q&P)” treatment. Materialia. 2021;18:101135.
  • Speer JG, Rizzo Assunção FC, Matlock DK, et al. The “quenching and partitioning” process: background and recent progress. Mater Res. 2005;8:417–423.
  • Pierce DT, Coughlin DR, Clarke KD, et al. Microstructural evolution during quenching and partitioning of 0.2C-1.5Mn-1.3Si steels with Cr or Ni additions. Acta Mater. 2018;151:454–469.
  • Samanta S, Das S, Chakrabarti D, et al. Development of multiphase microstructure with bainite, martensite, and retained austenite in a Co-containing steel through quenching and partitioning (Q&P) treatment. Metall Mater Trans A. 2013;44:5653–5664.
  • Pierce DT, Coughlin DR, Williamson DL, et al. Quantitative investigation into the influence of temperature on carbide and austenite evolution during partitioning of a quenched and partitioned steel. Scr Mater. 2016;121:5–9.
  • Rizzo FC, Edmonds DV, He K, et al.. Carbon enrichment of austenite and carbide precipitation during the quenching and partitioning (Q&P) process. Phoenix, Arizona, USA: TMS, International conference on solid-solid phase transformations in inorganic materials, 2005. p. 535-544.
  • Linke BM, Gerber T, Hatscher A, et al. Impact of Si on microstructure and mechanical properties of 22MnB5 hot stamping steel treated by quenching & partitioning (Q&P). Metall Mater Trans A. 2018;49:54–65.
  • Peng F, Xu Y, Gu X, et al. The relationships of microstructure-mechanical properties in quenching and partitioning (Q&P) steel accompanied with microalloyed carbide precipitation. Mater Sci Eng A. 2018;723:247–258.
  • HajyAkbary F, Sietsma J, Miyamoto G, et al. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel. Mater Sci Eng A. 2016;677:505–514.
  • Clarke AJ, Speer JG, Matlock DK, et al. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning. Scr Mater. 2009;61:149–152.
  • Santofimia MJ, Zhao L, Sietsma J. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels. Scr Mater. 2008;59:159–162.
  • Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959;7:59–60.
  • Steven W, Haynes AG. The temperature of formation of martensite and bainite in low-alloy steels. J Iron Steel Inst. 1956;183:349–359.
  • Andrews KW. Empirical formulae for the calculation of some transformation temperatures. J Iron Steel Inst. 1965;203:721–727.
  • Capdevila C, Caballero FG, De Andrés CG. Determination of martensite-start temperature in steels: Bayesian neural network model. ISIJ Int. 2002;42:894–902.
  • van Bohemen SMC. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater Sci Technol. 2012;28:487–495.
  • Lee SJ, Park KS. Prediction of martensite start temperature in alloy steels with different grain sizes. Metall Mater Trans A. 2013;44:3423–3427.
  • Gerdemann F. Microstructure and hardness of 9260 steel heat treated by the quenching and partitioning process [dipl. thesis]. Aachen University of Technology (RWTH); 2004.
  • Santofimia MJ, Speer JG, Clarke AJ, et al. Influence of interface mobility on the evolution of austenite–martensite grain assemblies during annealing. Acta Mater. 2009;57:4548–4557.
  • Jung M, Lee S, Lee Y. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel. Metall Mater Trans A. 2009;40A:551–559.
  • Uwakweh ONC, Génin J-MR, Silvain J-F. Electron microscopy study of the aging and first stage of tempering of high-carbon Fe-C martensite. Metall Trans A. 1991;22:797–806.
  • Cheng L, van der Pers NM, Böttger A, et al. Lattice changes of iron-carbon martensite on aging at room temperature. Metall Trans A. 1991;22:1957–1967.
  • Sherman AM, Eldis GT, Cohen M. The aging and tempering of iron-nickel-carbon martensites. Metall Trans A. 1983;14A:995–1005.
  • Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction. Metall Trans A. 1983;14:1025–1031.
  • Speich GR. Tempering of low-carbon martensite. Trans TMS-AIME. 1969;245:2553–2564.
  • van Rooyen M, Mittemeijer EJ. Differential thermal analysis of iron-carbide martensites. Scr Metall. 1982;16:1255–1260.
  • Cheng L, Brakman CM, Korevaar BM, et al. The tempering of iron-carbon martensite; dilatometric and calorimetric analysis. Metall Trans A. 1988;19A:2415–2426.
  • Edmonds DV, He K, Miller MK, et al. Microstructural features of ‘quenchnig and partitioning’: a new martensitic steel heat treatment. Mater Sci Forum. 2008;539–543:4819–4825.
  • Krauss G. Tempering and structural change in ferrous martensitic structures. In: Proc Int Conf Phase Transform Ferr Alloy; Warrendale (PA): Metallurgical Society of AIME; 1984. p. 101–123.
  • Bhadeshia HKDH, Honeycombe R. Tempering of martensite. Steels: microstructure and properties. 4th ed. Oxford, UK: Butterworth-Heinemann; 2017. p. 237–270.
  • Kim DH, Speer JG, Kim HS, et al. Observation of an isothermal transformation during quenching and partitioning processing. Metall Mater Trans A. 2009;40:2048–2060.
  • Jang JH, Kim IG, Bhadeshia HKDH. ϵ-Carbide in alloy steels: first-principles assessment. Scr Mater. 2010;63:121–123.
  • Krauss G. Martensite in steel: strength and structure. Mater Sci Eng A. 1999;273–275:40–57.
  • Hennessy DG, Sharma V, Ansell GS. Tempering kinetics of alloy steels as a function of quench rate and Ms temperature. Metall Trans A. 1983;14:1013–1019.
  • Williamson DL, Nakazawa K, Krauss G. A study of the early stages of tempering in an Fe-1.2 Pct alloy. Metall Trans A. 1979;10:1351–1363.
  • Kalish D, Cohen M. Structural changes and strengthening in the strain tempering of martensite. Mater Sci Eng. 1970;6:156–166.
  • Kim D, Lee SJ, De Cooman BC. Microstructure of low C steel isothermally transformed in the Ms to Mf temperature range. Metall Mater Trans A. 2012;43:4967–4983.
  • Santofimia MJ, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite. Mater Sci Eng A. 2010;527:6429–6439.
  • Santofimia MJ, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel. Acta Mater. 2011;59:6059–6068.
  • Navarro-López A, Sietsma J, Santofimia MJ. Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel. Metall Mater Trans A. 2016;47:1028–1039.
  • Samanta S, Biswas P, Giri S, et al. Formation of bainite below the Ms temperature: kinetics and crystallography. Acta Mater. 2016;105:390–403.
  • van Bohemen SMC, Santofimia MJ, Sietsma J. Experimental evidence for bainite formation below Ms in Fe-0.66C. Scr Mater. 2008;58:488–491.
  • Celada-Casero C, Kwakernaak C, Sietsma J, et al. The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel. Mater Des. 2019;178:107847.
  • Kim K, Lee SJ. Effect of Ni addition on the mechanical behavior of quenching and partitioning (Q&P) steel. Mater Sci Eng A. 2017;698:183–190.
  • Navarro-López A, Hidalgo J, Sietsma J, et al. Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature. Mater Charact. 2017;128:248–256.
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater. 2009;57:533–543.
  • Goodenow RH, Barkalow RH, Hehemann RF. Bainite transformations in hypoeutectoid steels. Phys prop martensite bainite, Spec Rep 93. Scarborough: The Iron and Steel Institute; 1965. p. 135–141.
  • Ko T, Cottrell SA. The formation of bainite. J Iron Steel Inst. 1952;172:307–313.
  • Hasan SM, Kumar S, Chakrabarti D, et al. Understanding the effect of prior bainite/martensite on the formation of carbide-free bainite. Philos Mag ISSN. 2020;100:797–821.
  • Rementeria R, Capdevila C, Nguez-reyes RD, et al. Carbon clustering in low-temperature bainite. Metall Mater Trans A. 2018;49:5277–5287.
  • Garcia-Mateo C, Jimenez JA, Yen HW, et al. Low temperature bainitic ferrite: evidence of carbon super-saturation and tetragonality. Acta Mater. 2015;91:162–173.
  • Ranjan R, Singh SB. Isothermal bainite transformation in low-alloy steels: mechanism of transformation. Acta Mater. 2021;202:302–316.
  • Udyansky A, Pezold JV, Bugaev VN, et al. Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. Phys Rev B. 2009;79:1–5.
  • Zener C. Kinetics of the decomposition of austenite. Trans Am Inst Min Met Eng. 1946;167:550–595.
  • Jang JH, Bhadeshia HKDH, Suh D-W. Solubility of carbon in tetragonal ferrite in equilibrium with austenite. Scr Mater. 2013;68:195–198.
  • Rementeria R, Poplawsky JD, Urones-Garrote E, et al. Carbon supersaturation and clustering in bainitic ferrite at low temperature. In: Proc 5th Int Symp Steel Sci, Vol. 1; Kyoto, Japan; 2017. p. 29–34.
  • Kähkönen J, Pierce DT, Speer JG, et al. Quenched and partitioned CMnSi steels containing 0.3 and 0.4 wt.% carbon. J Mater. 2016;68:210–215.
  • Bhadeshia HKDH. Other Fe-C carbides. Theory of transformations in steels. Boca Raton and Abingdon: CRC Press, Taylor & Francis Group; 2021. p. 419–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.