269
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational and performance studies of Ag2S–Bi2S3 quantum dot-sensitised solar cells

, ORCID Icon, , &
Pages 842-852 | Received 22 Dec 2021, Accepted 08 Apr 2022, Published online: 02 May 2022

References

  • Sahu A, Garg A, Dixit A. A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol Energy. 2020;203:210–239.
  • Pan Z, Rao H, Mora-Seró I, et al. Quantum dot-sensitized solar cells. Chem Soc Rev. 2018;47(20):7659–7702.
  • Kusuma J, Balakrishna G. A review on electrical characterization techniques performed to study the device performance of quantum dot sensitized solar cells. Sol Energy. 2018;159:682–696.
  • Alivisatos AP. Semiconductor cluster, nanocrystals, and quantum dots. Science. 1996;271(5251):933–937.
  • Cotta MA. Quantum dots and their applications: what lies ahead? ACS Appl Nano Mater. 2020;3(6):4920–4924.
  • Ananthakumar S, Balaji D, Kumar JR, et al. Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Appl Sci. 2019;1:186.
  • Jun HK, Careem MA, Arof AK. Efficiency improvement of CdS and CdSe quantum dot-sensitized solar cells by TiO2 surface treatment. J Renew Sustain Energy. 2014;6(2):023107.
  • Archana T, Vijayakumar K, Subashini G, et al. Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells. RSC Adv. 2020;10(25):14837–14845.
  • Song H, Lin Y, Zhang Z, et al. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition. J Am Chem Soc. 2021;143(12):4790–4800.
  • Lin Y, Song H, Zhang J, et al. Hole transport materials mediating hole transfer for high efficiency quantum dot sensitized solar cells. J Mater Chem A. 2021;9(2):997–1005.
  • Rao H, Zhou M, Pan Z, et al. Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. J Mater Chem A. 2020;8(20):10233–10241.
  • Tian J, Cao G. Semiconductor quantum dot-sensitized solar cells. Nano Rev. 2013;4(1):22578.
  • Chang J-Y, Su L-F, Li C-H, et al. Efficient ‘green’ quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture. Chem Commun. 2012;48(40):4848–4850.
  • Pan Z, Mora-Seró I, Shen Q, et al. High-efficiency ‘green’ quantum dot solar cells. J Am Chem Soc. 2014;136(25):9203–9210.
  • Choi H, Jeong S. A review on eco-friendly quantum dot solar cells: materials and manufacturing processes. Int J Precis Eng Manuf Green Technol. 2018;5:349–358.
  • Zumeta-Dubé I, Ruiz-Ruiz V-F, Díaz D, et al. TiO2 sensitization with Bi2S3 quantum dots: the inconvenience of sodium ions in the deposition procedure. J Phys Chem C. 2014;118(22):11495–11504.
  • Rodriguez AN, Nair MTS, Nair PK. Absorber films of Ag2S and AgBiS2 prepared by chemical bath deposition. MRS Online Proc Lib. 2002;730:514.
  • Chen C, Qiu X, Ji S, et al. The synthesis of monodispersed AgBiS2 quantum dots with a giant dielectric constant. CrystEngComm. 2013;15(38):7644–7648.
  • Huang P-C, Yang W-C, Lee M-W. Agbis2 semiconductor-sensitized solar cells. J Phys Chem C. 2013;117(36):18308–18314.
  • Öberg VA, Johansson MB, Zhang X, et al. Cubic AgBiS2 colloidal nanocrystals for solar cells. ACS Appl Nano Mater. 2020;3(5):4014–4024.
  • Burgués-Ceballos I, Wang Y, Akgul MZ, et al. Colloidal AgBiS2 nanocrytals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy. 2020;75:104961.
  • Bernechea M, Miller NC, Xercavins G, et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat Photonics. 2016;10:521–525.
  • Miller NC, Bernechea M. Research update: bismuth based materials for photovoltaics. APL Mater. 2018;6(8):084503.
  • Liang N, Chen W, Dai F, et al. Homogenously hexagonal prismatic AgBiS2 nanocrystals: controlled synthesis and application in quantum dot-sensitized solar cells. CrystEngComm. 2015;17(9):1902–1905.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(1369):3865.
  • Hamann DR, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys Rev Lett. 1979;43(1979):1494–1497.
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14:2745.
  • Ehrlich S, Moellmann J, Reckien W, et al. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem. 2011;12(17):3414–3420.
  • Srinivasu P, Singh SP, Islam A, et al. Novel approach for the synthesis of nanocrystalline anatase titania and their photovoltaic application. Adv Optoelectron. 2011;2011:539382.
  • Ngoi KK, Jun HK. Study of fabrication of fully aqueous solution processed SnS quantum dot-sensitized solar cell. Green Proc Syn. 2019;8(1):443–450.
  • Furukawa S, Miyasato T. Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B. 1988;38(8):5726–5729.
  • Du N, Cui Y, Zhang L, et al. First-principles study of the electron-hole recombination rate at the interface of the CdSe quantum dot and TiO2 substrate. J Phys Chem C. 2021;125(29):15785–15795.
  • Ha NTT, Be PT, Lan PT, et al. Whether planar or corrugated graphitic carbon nitride combined with titanium dioxide exhibits better photocatalytic performance? RSC Adv. 2021;11(27):16351–16358.
  • Gao H, Jia J, Guo F, et al. The electronic structure and photoactivity of TiO2 modified by hybridization with monolayer g-C3N4. J Photochem Photobiol A. 2018;364:328–335.
  • Hu H, Ding J, Zhang S, et al. Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res Lett. 2013;8:10.
  • Han M, Guo H, Li B, et al. Controllable coverage of Bi2S3 quantum dots on one-dimensional TiO2 nanorod arrays by pulsed laser deposition technique for high photoelectrochemical properties. New J Chem. 2017;41(12):4820–4827.
  • Zhou S, Yang J, Li W, et al. Preparation and photovoltaic properties of ternary AgBiS2 quantum dots sensitized TiO2 nanorods photoanodes by electrochemical atomic layer deposition. J Electrochem Soc. 2016;163(3):D63–D67.
  • Wang L, Han P, Zhang Z, et al. Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study. Comput Mater Sci. 2013;77:281–285.
  • Taha H, Henry DV, Yin Amri A, et al. Probing the effects of thermal treatment on the electronic structure and mechanical properties of Ti-doped ITO thin films. J Alloys Compd. 2017;721:333–346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.