237
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Response of Ti6321 titanium alloy at different strain rates under tensile loading

, , , , &
Pages 1037-1045 | Received 25 Jul 2021, Accepted 19 Apr 2022, Published online: 02 May 2022

References

  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti–6Al–4 V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320.
  • Long J, Zhang L-J, Ning J, et al. Dynamic behavior of plasma and molten pool of pure titanium during hyperbaric laser welding. Infr Phys Technol. 2021;115:103686.
  • Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications. 2003.
  • Huang W, Zan X, Nie X, et al. Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures. Mater Sci Eng: A. 2007;443(1-2):33–41.
  • Bobbili R, Ramakrishna B, Madhu V. Dynamic compressive behavior and fracture modeling of titanium alloy IMI 834. J Alloys Compd. 2017;714:225–231.
  • Huang LJ, Geng L, Li AB, et al. Characteristics of hot compression behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy with an equiaxed microstructure. Mater Sci Eng: A. 2009;505(1-2):136–143.
  • Liu Y, Xu H, Zhu L, et al. Investigation into the microstructure and dynamic compressive properties of selective laser melted Ti–6Al–4 V alloy with different heating treatments. Mater Sci Eng: A. 2021;805.
  • Ma X, Chen Z, Xiao L, et al. Stress-induced martensitic transformation in a β-solution treated Ti–10V–2Fe–3Al alloy during compressive deformation. Mater Sci Eng: A. 2021;801.
  • Zheng C, Wang F, Cheng X, et al. Capturing of the propagating processes of adiabatic shear band in Ti–6Al–4 V alloys under dynamic compression. Mater Sci Eng: A. 2016;658:60–67.
  • Yu R, Li X, Li W, et al. Application of four different models for predicting the high-temperature flow behavior of TG6 titanium alloy. Mater. Today Commun. 2021;26.
  • Yang Y, Jiang F, Yang M, et al. Electron backscatter diffraction analysis of strain distribution in adiabatic shear band and its nearby area in Ti–3Al–5Mo–4·5 V alloy. Mater Sci Technol. 2012;28(2):165–170.
  • Chichili DR, Ramesh KT, Hemker KJ. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater. 1998;46(3):1025–1043.
  • Li Q, Xu YB, Bassim MN. Dynamic mechanical behavior of pure titanium. J Mater Pro Technol. 2004;155–156:1889–1892.
  • Meng B, Fu MW, Shi SQ. Deformation behavior and microstructure evolution in thermal-aided mesoforming of titanium dental abutment. Mater Des. 2016;89:1283–1293.
  • Meyers MA, Subhash G, Kad BK, et al. Evolution of microstructure and shear-band formation in α-hcp titanium. Mechan Mater. 1994;17(2):175–193.
  • Fan R-L, Wu Y, Chen M-H, et al. Relationship among microstructure, mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation. Trans Nonferrous Met Soc China. 2020;30(4):928–943.
  • Yang J, Chen Y, Xiao S, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite. Mater Sci Eng: A. 2020;788:139516.
  • Zhao J, Lv L, Liu G, et al. Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model. Mater Sci Eng: A. 2017;707:30–39.
  • Hao F, Xiao J, Feng Y, et al. Tensile deformation behavior of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range. J Mater Res Technol. 2020;9(3):2818–2831.
  • Wang J, Zhao Y, Zhou W, et al. In-situ investigation on tensile deformation and fracture behaviors of a new metastable β titanium alloy. Mater Sci Eng: A. 2021;799.
  • Shen J, Chen B, Umeda J, et al. Rate sensitivity and work-hardening behavior of an advanced Ti-Al-N alloy under uniaxial tensile loading. Mater Sci Eng: A. 2019;744:630–637.
  • Paghandeh M, Zarei-Hanzaki A, Abedi HR, et al. Compressive/tensile deformation behavior and the correlated microstructure evolution of Ti–6Al–4 V titanium alloy at warm temperatures. J Mater Res Technol. 2021;10:1291–1300.
  • Gao P, Fan J, Sun F, et al. Crystallography and asymmetry of tensile and compressive stress-induced martensitic transformation in metastable β titanium alloy Ti–7Mo–3Nb–3Cr–3Al. J Alloys Compd. 2019;809.
  • Tao JH, Gu BQ, Chen LL, et al. Asymmetry of tension-compression performances and strain rate sensitivity of TA2. Rare Metal Mat Eng. 2019 Nov;48(11):3571–3576.
  • Zhao ZP, Xu PF, Cheng HX, et al. Impact fatigue behaviors of Ti6V4Al alloy under compressive and tensile stresses. Wear. 2019;428-429:217–222.
  • Lin JB, Ren WJ, Wang XY, et al. Tension–compression asymmetry in yield strength and hardening behaviour of as-extruded AZ31 alloy. Mater Sci Technol. 2016;32(18):1855–1860.
  • Yang QS, Jiang B, Dai JH, et al. Microstructure and mechanical behaviour of asymmetric extruded Mg–3Al–1Zn alloy sheets. Mater Sci Technol. 2013;29(6):710–714.
  • Gao F, Gao Q, Jiang P, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by EBW. Int J Lightweight Mater Manu. 2018;1(4):265–269.
  • Gao F, Guo Y, Yu W, et al. Microstructure evolution of friction stir welding of Ti6321 titanium alloy based on the weld temperature below microstructure transformation temperature. Mater Charact. 2021;177.
  • Xu XF, Tayyeb A, Wang L, et al. Research on dynamic compression properties and deformation mechanism of Ti6321 titanium alloy. J Mater Res Technol. 2020;9(5):11509–11516.
  • Yoo MH. Slip, twinning, and fracture in hexagonal close-packed metals. Metall Trans A. 1981;12(3):409–418.
  • Li H, Mason DE, Bieler TR, et al. Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis. Acta Mater. 2013;61(20):7555–7567.
  • Zhang B, Wang J, Wang Y, et al. Strain-rate-dependent tensile response of Ti(-)5Al(-)2.5Sn alloy. Materials (Basel). 2019 Feb 22;12(4).
  • Taylor J, Rice M. Elastic-plastic properties of iron. J Appl Phys. 1963;34(2):364–371.
  • Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005;53(3):555–567.
  • Yang J, Xu J, Zhang G-P. Deformation and damage behavior of colonies in a small-sized α/β Ti alloy. Scripta Mater. 2013;68(9):715–718.
  • Zhao P-C, Yuan G-J, Wang R-Z, et al. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF. J Mater Sci Technol. 2021;83:196–207.
  • Lee WS, Chen CW. Dynamic mechanical properties and microstructure of Ti–6Al–7Nb biomedical alloy as function of strain rate. Mater Sci Technol. 2013;29(9):1055–1064.
  • Lee WS, Lin CF, Chen TH, et al. High strain rate deformation of Ti–15Mo–5Zr–3Al alloy over wide temperature range. Mater Sci Technol. 2013;24(1):15–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.