133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of alternating magnetic fields on hot tearing susceptibility of Mg–4Zn–1.5Ca alloy

, ORCID Icon, , , , , & show all
Pages 50-61 | Received 12 Oct 2021, Accepted 06 Jul 2022, Published online: 18 Jul 2022

References

  • Yang Z, Wang K, Fu P, et al. Influence of alloying elements on hot tearing susceptibility of Mg–Zn alloys based on thermodynamic calculation and experimental. J Magn Alloys. 2018;6(1):44–51. doi:10.1016/j.jma.2018.01.001.
  • Kainer KU. Magnesium alloys and their applications. Weinheim: Wiley-VCH; 1999.
  • Song P. The influence of ECAP deformation and subsequent extrusion on the microstructure and properties of Mg–Zn–Ca–Mn magnesium alloy. Harbin: Harbin Institute of Technology; 2010.
  • Chen JX, Li LT, Yu XM, et al. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater. 2018;87:68–79. doi:10.1016/j.jmbbm.2018.07.022.
  • Zhang BP, Hou YL, Wang XD, et al. Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C. 2011;31(8):1667–1673. doi:10.1016/j.msec.2011.07.015.
  • Cao G, Haygood I, Kou S. Onset of hot tearing in ternary Mg–Al–Sr alloy castings. Metall Mater Trans A. 2010;41(8):2139–2150. doi:10.1007/s11661-010-0248-9.
  • Wei ZQ, Liu Z, Sheng XF, et al. Effects of Zn and Y on hot-tearing susceptibility of Mg–xZn–2xY alloys. Mater Sci Technol. 2019;35(15):1667–1673. doi:10.1080/02670836.2019.1652405.
  • Chen YH, Wang LP, Feng YC, et al. Effect of Al content on hot tearing behaviour of Mg–xAl–2Ca–2Sm alloys. Mater Sci Technol. 2018;35(2):1–11. doi:10.1080/02670836.2018.1545282.
  • Shi Z, Kim WJ, Cao FY, et al. Stress corrosion cracking of high-strength AZ31 processed by high-ratio differential speed rolling. J Magn Alloys. 2015;3:271–282. doi:10.1016/j.jma.2015.11.006.
  • Cao G, Zhang C, Cao H, et al. Hot-tearing susceptibility of ternary Mg–Al–Sr alloy castings. Metall Mater Trans A. 2010;41A:706–716. doi:10.1007/s11661-009-0134-5.
  • Zhen Z, Hort N, Huang YD, et al. Quantitative determination on hot tearing in Mg–Al binary alloys. Mater Sci Forum. 2009;618–619:533–540. doi:10.4028/www.scientific.net/MSF.618-619.533.
  • Eskin DG, Suyitno, Mooney JF, et al. Contraction of aluminium alloys during and after solidification. Metall Mater Trans A. 2004;35(4):1325–1335. doi:10.1007/s11661-004-0307-1.
  • Song JF, Pan FS, Jiang B, et al. A review on hot tearing of magnesium alloys. J Magn Alloys. 2016;4(3):151–172. doi:10.1016/j.jma.2016.08.003.
  • Daniel W, Christian H, Timso S, et al. Self-restraint hot cracking test for aluminium alloys using digital image correlation. Procedia CIRP. 2018;74:430–433. doi:10.1016/j.procir.2018.08.165.
  • Bai QL, Liu JC, Li HX, et al. A modified hot tearing criterion for direct chill casting of aluminium alloys. Mater Sci Technol. 2016;32(8):846–854. doi:10.1080/02670836.2015.1104081.
  • Clyne TW, Davies GJ. A comparison of experimental results and theoretical predictions relating to dependence of solidification cracking on composition. London: Solidification and Casting of Metals; 1979.
  • Clyne TW, Wolf M, Kurz W. The effect of melt composition to continuous casting. Metall Trans B. 1982;13(2):259–266. doi:10.1007/BF02664583.
  • Li Y, Li HX, Katgerman L, et al. Recent advances in hot tearing during casting of aluminium alloys. Prog Mater Sci. 2020;117:100741. doi:10.1016/j.pmatsci.2020.100741.
  • Vinodh G, Nodooshan HRJ, Li D, et al. Effect of Al content on hot-tearing susceptibility of Mg–10Zn–xAl alloys. Metall Mater Trans A. 2020;51(4):1897–1910. doi:10.1007/s11661-020-05657-9.
  • Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing. Metall Mater Trans A. 2000;31(5):1461–1472. doi:10.1007/s11661-000-0264-2.
  • Song JF, Wang Z, Huang YD. Hot tearing characteristics of Mg–2Ca–xZn alloys. J Mater Sci. 2016;51(5):2687–2704. doi:10.1007/s10853-015-9583-y.
  • Bai SW, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg–4Zn–xCa–0.3Zr (x = 0.5, 1, 1.5, 2) alloys. Int J Metalcast; 2021;15(4):(1):1298–1308. doi:10.1007/s40962-020-00553-9.
  • Liu SM, Wei ZQ, Liu Z, et al. Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg–Znx–Y2–Zr0.06 alloys with different initial mold temperatures. J Alloys Compd. 2022;904:163963. doi:10.1016/j.jallcom.2022.163963.
  • Jiang B, Liu W, Qiu D, et al. Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy. Mater Chem Phys. 2012;133(2–3):611–616. doi:10.1016/j.matchemphys.2011.12.087.
  • Hu B, Li D, Wang J, et al. Hot tearing behavior in double ternary eutectic alloy system: Mg–Ce–Al alloys. Metall Mater Trans A. 2020;51(12):6658–6669. doi:10.1007/s11661-020-06046-y.
  • Zhang XB, Zhu P, Zheng L, et al. Effect of adding Ce on the hot-tearing susceptibility of the 5TiB2/Al–5Cu composite. Mater Charact. 2020;168:110552. doi:10.1016/j.matchar.2020.110552.
  • Hu C, Yan F, Zhu Z, et al. Effects on microstructural refinement of mechanical properties in steel copper joints laser welded with alternating magnetic field augmentation. Mater Charact. 2021;175(7):111059. doi:10.1016/j.matchar.2021.111059.
  • He SY, Li CJ, Zhan TJ, et al. Reduction in microsegregation in Al–Cu alloy by alternating magnetic field. Acta Metall Sin (Engl Lett). 2019;33:267–274. doi:10.1007/s40195-019-00933-z.
  • Dong J, Zhao Z, Cui J, et al. Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al–Zn–Mg–Cu alloy. Metall Mater Trans A. 2004;35(8):2487–2494. doi:10.1007/s11661-006-0228-2.
  • Du XD, Wang F, Wang Z, et al. Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field. Acta Metall Sin (Engl Lett). 2020;33(9):1259–1270. doi:10.1007/s40195-020-01033-z.
  • Zhou Y, Mao PL, Wang Z, et al. Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg–7Zn–1Cu–0.6Zr magnesium alloy. J Mater Process Technol. 2020;282:116679. doi:10.1016/j.jmatprotec.2020.116679.
  • Liu Z, Zhang SB, Mao PL, et al. Effects of Y on hot tearing formation mechanism of Mg–Zn–Y–Zr alloys. Mater Sci Technol. 2013;30(10):1214–1222. doi:10.1179/1743284713Y.0000000437.
  • Esfahani M, Niroumand B. Study of hot tearing of A206 aluminium alloy using instrumented constrained T-shaped casting method. Mater Charact. 2010;61(3):318–324. doi:10.1016/j.matchar.2009.12.015.
  • Wang Z, Song JF, Huang YD, et al. An investigation on hot tearing of Mg–4.5Zn–(0.5Zr) alloys with Y additions. Metall Mater Trans A. 2015;46(5):2108–2118. doi:10.1007/s11661-015-2755-1.
  • Abrams H. Grain size measurement by the intercept method. Metallography. 1971;4(1):59–78. doi:10.1016/0026-0800(71)90005-X.
  • Garbacz R. Introduction to electromagnetic fields. Antennas Propag Soc Newsletter IEEE. 1982;24(5):17–19. doi:10.1109/MAP.1982.27643.
  • Karunakar DB, Rai RN, Patra S, et al. Effects of grain refinement and residual elements on hot tearing in aluminium castings. Int J Adv Manuf Technol. 2009;45(9–10):851–858. doi:10.1007/s00170-009-2037-4.
  • Ban CY. Fundamental study on solidification of Al alloys under electromagnetic field. Shenyang: Northeastern University; 2002.
  • Hu B, Li D, Li Z, et al. Hot tearing behavior in double ternary eutectic alloy system: Al–Mg–Si alloys. Metall Mater Trans A. 2021;52(2):789–805. doi:10.1007/s11661-020-06101-8.
  • Vives C. Effect of electromagnetic vibrations on micro-structure of continuously cast aluminium alloys. Mater Sci Eng A. 1993;173(1–2):169–172. doi:10.1016/0921-5093(93)90209-W.
  • He YL, Yang YS, Hu ZQ. Solidification and shaping of molten melts in electromagnetic field. Mater Rev. 2000;7:4–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.