253
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure evaluation and thermal deformation behaviours of wrought magnesium alloys

, ORCID Icon, , , &
Pages 283-299 | Received 09 Mar 2022, Accepted 30 Jul 2022, Published online: 11 Aug 2022

References

  • Abdullaev RN, Samoshkin DA, Agazhanov AS, et al. Heat capacity of pure magnesium and ultralight congruent magnesium–lithium alloy in the temperature range of 300 K to 825 K. J Eng Thermophys. 2021;30(2):207–212. DOI:10.1134/S1810232821020041
  • Tian J, Deng J, Ma R, et al. Pre-control of annealing temperature on the uniformity of deformed structure of wrought magnesium alloy. Mater Lett. 2021;305:130820. DOI:10.1016/j.matlet.2021.130820
  • Xie Q, Zhu Z, Kang G. Crystal-plasticity-based dynamic constitutive model of AZ31B magnesium alloy at elevated temperature and with explicit plastic-strain-rate control. Acta Mech Solida Sin. 2020;33(1):31–50. DOI:10.1007/s10338-019-00130-6
  • Tang W, Lee JY, Wang H, et al. Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet. J Magnes Alloy. 2021;9(3):927–936. DOI:10.1016/j.jma.2020.02.023
  • Li B, Zhang K, Shi G, et al. Microstructure evolution, mechanical properties and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) magnesium alloy. J Rare Earths. 2021;39(5):600–608. DOI:10.1016/j.jre.2021.01.012
  • Kazemi A, Yang S. Effects of magnesium dopants on grain boundary migration in aluminum-magnesium alloys. Comput Mater Sci. 2021;188:110130. DOI:10.1016/j.commatsci.2020.110130
  • Zengin H, Turen Y, Ahlatci H, et al. Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy. Rare Met. 2018;39(8):909–917. DOI:10.1007/s12598-018-1045-7
  • Zou Q, Le Q, Chen X, et al. Effect of Nd-rich phases on the corrosion behavior of AZ80 magnesium alloy in alkaline solution. JOM. 2021;73(12):4376–4386. DOI:10.1007/s11837-021-04974-7
  • Wang D, Hu M, Sugiyama S, et al. Microstructure evolution and hot extrusion behavior of AZ31-Nd magnesium alloy adopting AZ31 chips and Mg-Nd chips. Results Phys. 2019;15:102622. DOI:10.1016/j.rinp.2019.102622
  • Mo N, McCarroll I, Tan Q, et al. Roles of Nd and Mn in a new creep-resistant magnesium alloy. Mater Sci Eng A. 2020;779:139152. DOI:10.1016/j.msea.2020.139152
  • de Oliveira PC, Montoro LA, Perez-Prado MT, et al. Development of segregations in a Mg–Mn–Nd alloy during HPT processing. Mater Sci Eng A. 2021;802:140423. DOI:10.1016/j.msea.2020.140423
  • Jiang N, Chen L, Meng L, et al. Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy. J Rare Earths. 2016;34(6):632–637. DOI:10.1016/S1002-0721(16)60072-8
  • Baczmański A, Wroński M, Kot P, et al. The role of basal slip in the generation of intergranular stresses in magnesium alloy studied using X-ray diffraction and modelling. Mater Des. 2021;202:109543. DOI:10.1016/j.matdes.2021.109543
  • Duan X, Liu J, Li P, et al. Microstructure and texture evolutions in AZ80A magnesium alloy during high-temperature compression. Mater Res Express. 2021;8(1):016535. DOI:10.1088/2053-1591/abdc53
  • Tam KJ, Vaughan MW, Shen L, et al. Modelling dynamic recrystallisation in magnesium alloy AZ31. Int J Plast. 2021;142:102995. DOI:10.1016/j.ijplas.2021.102995
  • Gao M, Yang K, Tan L, et al. Improvement of mechanical property and corrosion resistance of Mg-Zn-Nd alloy by bi-direction drawing. J Mater Sci Technol. 2021;81:88–96. DOI:10.1016/j.jmst.2020.11.060
  • Guo Y, Liu B, Xie W, et al. Anti-phase boundary energy of β series precipitates in Mg-Y-Nd system. Scripta Mater. 2021;193:127–131. DOI:10.1016/j.scriptamat.2020.11.004
  • Ha C, Bohlen J, Zhou X, et al. Texture development and dislocation activities in Mg-Nd and Mg-Ca alloy sheets. Mater Charact. 2021;175:111044. DOI:10.1016/j.matchar.2021.111044
  • Hong L, Wang R, Zhang X. The role of Nd in corrosion properties of Mg-12Gd-2Zn-0.4Zr alloys. J Mater Eng Perform. 2021;30(8):6000–6008. DOI:10.1007/s11665-021-05782-5
  • Xia Z, Xu G, Tao X, et al. Experimental investigation of phase equilibria in the Mg-rich corner of Mg-Nd-Sc system. Mater Res Express. 2020;8(1):016502. DOI:10.1088/2053-1591/abd2f5
  • Xie K, Wang L, Guo Y, et al. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J Orthop Translat. 2021;27:96–100. DOI:10.1016/j.jot.2020.11.007
  • Zhang J, Jiang B, Yang Q, et al. Role of second phases on the corrosion resistance of Mg-Nd-Zr alloys. J Alloys Compd. 2020;849:156619. DOI:10.1016/j.jallcom.2020.156619
  • Zhao X, Li Z, Chen H, et al. On the equilibrium intermetallic phase in Mg-Nd-Ag alloys. Metall Mater Trans A. 2020;51(3):1402–1415. DOI:10.1007/s11661-019-05580-8
  • Kong F, Sun Y, Yao S. Effect of heat treatment on Mg-9Gd-3Y-0.3Zr alloy microstructure and properties. IOP Conf Ser Mater Sci Eng. 2019;490(2):22072. DOI:10.1088/1757-899X/490/2/022072
  • Bourezg YI, Azzeddine H, Hennet L, et al. The sequence and kinetics of pre-precipitation in Mg-Nd alloys after HPT processing: a synchrotron and DSC study. J Alloys Compd. 2017;719:236–241. DOI:10.1016/j.jallcom.2017.05.166
  • Zeng X, Minárik P, Dobroň P, et al. Role of deformation mechanisms and grain growth in microstructure evolution during recrystallization of Mg-Nd based alloys. Scripta Mater. 2019;166:53–57. DOI:10.1016/j.scriptamat.2019.02.045
  • Zeng J, Wang F, Wei X, et al. A new constitutive model for thermal deformation of magnesium alloys. Metall Mater Trans A. 2020;51(1):497–512. DOI:10.1007/s11661-019-05528-y
  • Zheng X, Dong J, Wang S. Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. J Magnes Alloy. 2018;6(1):95–99. DOI:10.1016/j.jma.2018.01.003
  • Haghshenas M. Mechanical characteristics of bio-degradable magnesium matrix composites: a review.J Magnes Alloy. 2017;5(2):189–201. DOI:10.1016/j.jma.2017.05.001
  • Shahin M, Wen C, Munir K, et al. Mechanical and corrosion properties of graphene nanoplatelet-reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications. J Magnes Alloy. 2022;10(2):458–477. DOI:10.1016/j.jma.2021.05.011
  • Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. J Alloys Compd. 2022;903:163964. DOI:10.1016/j.jallcom.2022.163964
  • Zhong X, Wang L, Liu F. Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028. Chin shu hsüeh pao. 2018;54(7):969–980. DOI:10.11900/0412.1961.2017.00461
  • Mirzadeh H, Roostaei M, Parsa MH, et al. Dynamic recrystallization kinetics in Mg-3Gd-1Zn magnesium alloy during hot deformation. Int J Mater Res. 2016;107(3):277–279. DOI:10.3139/146.111333
  • Jalali MS, Zarei-Hanzaki A, Mosayebi M, et al. Unveiling the influence of dendrite characteristics on the slip/twinning activity and the strain hardening capacity of Mg-Sn-Li-Zn cast alloys. J Magnes Alloy. 2022. DOI:10.1016/j.jma.2022.03.016
  • Chen Y, Jin L, Dong J, et al. Twinning effects on the hot deformation behavior of AZ31 Mg alloy. Mater Charact. 2016;118:363–369. DOI:10.1016/j.matchar.2016.06.014
  • Piao K, Chung K, Lee M-G, et al. Twinning-Slip transitions in Mg AZ31B. Metall Mater Trans A. 2012;43(9):3300–3313. DOI:10.1007/s11661-012-1154-0
  • Zhou G, Jain MK, Wu P, et al. Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures: how deformation mechanisms evolve. Int J Plast. 2016;79:19–47. DOI:10.1016/j.ijplas.2015.12.006
  • Yu Y. Fundamentals of materials science. Beijing: Higher Education Press; 2012. Chinese.
  • Eleti RR, Chokshi AH, Shibata A, et al. Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy. Acta Mater. 2020;183:64–77. DOI:10.1016/j.actamat.2019.11.001
  • Jalali MS, Zarei-Hanzaki A, Jamili AM, et al. The effect of rare earth elements on the work softening behavior of as-cast Mg-4Al-2Sn. Mater Res Express. 2020;7(8):86509. DOI:10.1088/2053-1591/ab6777
  • Wang M, Chen C, Zhang Z, et al. Plastic deformation behaviors and microstructural evolution of FCC, BCC and HCP metals. Changsha: Central South University Press; 2021. Chinese.
  • Hartt WH, Reedhill RE. Internal deformation and fracture of second-order [1011]-[1112] twins in magnesium. Trans Metall Soc AIME. 1968;242(6):1127.
  • Hong S-G, Park SH, Lee CS. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010;58(18):5873–5885. DOI:10.1016/j.actamat.2010.07.002
  • Kong FX, Yao HZ, Xie WD. Study on structural characteristics of composite smart grille based on principal component analysis. Comput Intell Neurosci. 2022;2022:4712041–4712041. DOI:10.1155/2022/4712041.
  • Hirth JP. Influence of grain boundarier on mechanical properties. Metall Trans. 1972;3(12):3047–3067. DOI:10.1007/BF02661312
  • Raj R, Ashby MF. On grain boundary sliding and diffusional creep. Metall Trans. 1971;2(4):1113–1127. DOI:10.1007/BF02664244
  • Ashby MF, Verrall RA. Diffusion-accommodated flow and superplasticity. Acta Metall. 1973;21(2):149–163. DOI:10.1016/0001-6160(73)90057-6
  • Karami M, Mahmudi R. Hot shear deformation constitutive analysis of an extruded Mg–6Li–1Zn alloy. Mater Lett. 2012;81:235–238. DOI:10.1016/j.matlet.2012.05.020
  • Karami M, Mahmudi R. Hot shear deformation constitutive analysis and processing map of extruded Mg-12Li-1Zn bcc alloy. Mater Des. 2014;53:534–539. DOI:10.1016/j.matdes.2013.07.060
  • Song J, She J, Chen D, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnes Alloy. 2020;8(1):1–41. DOI:10.1016/j.jma.2020.02.003
  • Mirzadeh H. A comparative study on the hot flow stress of Mg–Al–Zn magnesium alloys using a simple physically-based approach. J Magnes Alloy. 2014;2(3):225–229. DOI:10.1016/j.jma.2014.09.003
  • Frost HJAMF. Deformation-mechanism maps: the plasticity and creep of metals and ceramics. 1st ed. New York: Pergamon Press; 1982.
  • Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59(16):6441–6448. DOI:10.1016/j.actamat.2011.07.008
  • Mirzadeh H. Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys. Trans Nonferrous Met Soc China. 2015;25(5):1614–1618. DOI:10.1016/S1003-6326(15)63765-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.