257
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Quantifying geometrically necessary dislocation with surface roughness effect in copper (111) under indentation

ORCID Icon, , , , &
Pages 310-320 | Received 29 Sep 2021, Accepted 30 Jul 2022, Published online: 11 Aug 2022

References

  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1997;46(3):411–425.
  • Liu Y, Ngan AHW. Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr Mater. 2001;44(2):237–241.
  • Huang Y, Zhang F, Hwang KC, et al. A model of size effects in nano-indentation. J Mech Phys Solids. 2006;54(8):1668–1686.
  • Kim JY, Lee JJ, Lee YH, et al. Surface roughness effect in instrumented indentation: a simple contact depth model and its verification. J Mater Res. 2006;21(12):2975–2978.
  • Petit F, Vandeneede V, Cambier F. Relevance of instrumented micro-indentation for the assessment of hardness and Young’s modulus of brittle materials. Mater Sci Eng A. 2007;456(1–2):252–260.
  • Fleck NA, Hutchinson JW. Strain gradient plasticity. Adv Appl Mech. 1997;33(C):295–361.
  • McElhaney KW, Vlassak JJ, Nix WD. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 1998;13(5):1300–1306.
  • Demir E, Raabe D, Zaafarani N, et al. Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 2009;57(2):559–569.
  • Kysar JW, Gan YX, Morse TL, et al. High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: geometrically necessary dislocation densities. J Mech Phys Solids. 2007;55(7):1554–1573.
  • Tang D, Zhao L, Wang H, et al. The role of rough surface in the size-dependent behavior upon nano-indentation. Mech Mater. 2021;157(March):103836.
  • Kim JY, Kang SK, Lee JJ, et al. Influence of surface-roughness on indentation size effect. Acta Mater. 2007;55(10):3555–3562.
  • Chuah HG, Ripin ZM. Quantifying the surface roughness effect in microindentation using a proportional specimen resistance model. J Mater Sci. 2013;48(18):6293–6306.
  • Jiang WG, Su JJ, Feng XQ. Effect of surface roughness on nanoindentation test of thin films. Eng Fract Mech. 2008;75(17):4965–4972.
  • Berke P, El Houdaigui F, Massart TJ. Coupled friction and roughness surface effects in shallow spherical nanoindentation. Wear. 2010;268(1–2):223–232.
  • Walter C, Antretter T, Daniel R, et al. Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf Coatings Technol. 2007;202(4–7):1103–1107.
  • Wei Y, Wang X, Zhao M. Size effect measurement and characterization in nanoindentation test. J Mater Res. 2004;19(1):208–217.
  • Pelletier H, Gauthier C, Schirrer R. Relationship between contact geometry and average plastic strain during scratch tests on amorphous polymers. Tribol Int. 2010;43(4):796–809.
  • Zhang TY, Xu WH, Zhao MH. The role of plastic deformation of rough surfaces in the size-dependent hardness. Acta Mater. 2004;52(1):57–68.
  • Chuah HG, Tan WH, Chang BP, et al. The influence of surface roughness on material dislocation of microindentation using bonded interface technique. Tribol - Mater Surf Interfaces. 2019;13(4):191–196.
  • Durst K, Backes B, Göken M. Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater. 2005;52(11):1093–1097.
  • Zaafarani N, Raabe D, Singh RN, et al. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 2006;54(7):1863–1876.
  • Wang Y, Raabe D, Klüber C, et al. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 2004;52(8):2229–2238.
  • Rester M, Motz C, Pippan R. Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 2007;55(19):6427–6435.
  • Hays C, Kendall EG. An analysis of knoop microhardness. Metallography. 1973;6(4):275–282.
  • Cook RF, Pharr GM. Direct observation and analysis of indentation cracking in glasses and ceramics. J Am Ceram Soc. 1990;73(4):787–817.
  • Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments.J Mater Res. 1986;1(4):601–609.
  • Li H, Bradt RC. The microhardness indentation load/size effect in rutile and cassiterite single crystals. J Mater Sci. 1993;28(4):917–926.
  • Nye JF. Some geometrical relations in dislocated crystals. Acta Metall. 1953;1(2):153–162.
  • Yang B, Vehoff H. Dependence of nanohardness upon indentation size and grain size - a local examination of the interaction between dislocations and grain boundaries. Acta Mater. 2007;55(3):849–856.
  • Hughes DA, Hansen N, Bammann DJ. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scr Mater. 2003;48(2):147–153.
  • Kartini SE, Ismail R, et al. Analysis of the contact area of smooth and rough surfaces in contact with sphere indenter using finite element method. 2016.
  • Grilli N, Tarleton E, Cocks ACF. Coupling a discrete twin model with cohesive elements to understand twin-induced fracture. Int J Fract. 2021;227(2):173–192.
  • Chuah HG, Ripin ZM. Modeling of microindentation with consideration of the surface roughness. Metall Mater Trans A Phys Metall Mater Sci. 2013;44(13):5676–5687.
  • Abu Al-Rub RK. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech Mater. 2007;39(8):787–802.
  • Gao H, Huang Y. Geometrically necessary dislocation and size-dependent plasticity. Scr Mater. 2003;48(2):113–118.
  • Muránsky O, Balogh L, Tran M, et al. On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques. Acta Mater. 2019;175:297–313.
  • Wang L, Yang L, Dong X, et al. Dynamic constitutive distortional law of materials—micro mechanism based on dislocation dynamics. Dyn Mater. Elsevier. 2019: 221–272. https://doi.org/10.1016/B978-0-12-817321-3.00006-1.
  • Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42(2):475–487.
  • Beake BD, Goel S. Incipient plasticity in tungsten during nanoindentation: dependence on surface roughness, probe radius and crystal orientation. Int J Refract Met Hard Mater. 2018;75:63–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.