321
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Indentation size effect in steels with different carbon contents and microstructures

, ORCID Icon, , &
Pages 338-346 | Received 23 Feb 2022, Accepted 09 Aug 2022, Published online: 05 Sep 2022

References

  • Miyahara K, Matsuoka S, Hayashi T. Nanoindentation as a strength probe – a study on the hardness dependence of indent size for fine-grained and coarse-grained ferritic steel. Metall Mater Trans A. 2001;32 (13):761–768.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7 (6):1564–1583.
  • Hu J, Sun W, Jiang Z, et al. Indentation size effect on hardness in the body-centered cubic coarse-grained and nanocrystalline tantalum. Mater Sci Eng A. 2017;686:19–25.
  • Vlassak JJ, Nix WD. Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids. 1994;42 (8):1223–1245.
  • Song M, Liu Y, He X, et al. Nanoindentation creep of ultrafine-grained Al2O3 particle reinforced copper composites. Mater Sci Eng A. 2013;560:80–85.
  • Blau PJ. Microindentation techniques in materials science and engineering: a symposium sponsored by ASTM Committee E-4 on Metallography and by the International Metallographic Society, Philadelphia, PA, 15–18 July 1984. Astm International; 1986.
  • Gong J, Wu J, Guan Z. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J Eur Ceram Soc. 1999;19 (15):2625–2631.
  • Nix WD, Gao H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids. 1998;46 (3):411–425.
  • Sangwal K, Surowska B, Błaziak P. Analysis of the indentation size effect in the microhardness measurement of some cobalt-based alloys. Mater Chem Phys. 2003;77 (2):511–520.
  • Gong J, Wu J, Guan Z. Examination of the indentation size effect in low-load Vickers hardness testing of ceramics. J Eur Ceram Soc. 1999;19 (15):2625–2631.
  • Golan G, Rabinovich E, Axelevitch A, et al. Thin films indentation size effect in microhardness measurements. Optoelectron Adv Mater. 2000;2:317–325.
  • Xu RG, Song H, Leng Y, et al. A molecular dynamics simulations study of the influence of prestrain on the pop-in behavior and indentation size effect in Cu single crystals. Materials (Basel). 2021;14(18):5520.
  • Petrík J, Blaško P, Markulík Š, et al. The indentation size effect (ISE) of metals. Crystals (Basel). 2022;12(6):795.
  • Lavakumar A, Sarangi SS, Chilla V, et al. A ‘new’ empirical equation to describe the strain hardening behavior of steels and other metallic materials. Mater Sci Eng A. 2021;802:140641.
  • Tabor D. The hardness of metals. Oxford: Oxford university press; 2000.
  • Bückle H. Progress in micro-indentation hardness testing. Metall Rev 1959;4:49–100.
  • Sahin O, Uzun O, Kolemen U, et al. Vickers microindentation hardness studies of β-Sn single crystals. Mater Charact 2007;58 (2):197–204.
  • Hays C, Kendall EG. An analysis of Knoop microhardness. Metallography. 1973;6:275–282.
  • Li H, Bradt RC. Knoop microhardness anisotropy of single-crystal LaB6. Mater Sci Eng A. 1991;142 (1):51–61.
  • Li H, Ghosh A, Han YH, et al. The frictional component of the indentation size effect in low load microhardness testing. J Mater Res. 1993;8:1028–1032.
  • Gao H, Huang Y, Nix WD, et al. Mechanism-based strain gradient plasticity – I. Theory. J Mech Phys Solids. 1999;47 (6):1239–1263.
  • Acharya A, Bassani JL. Lattice incompatibility and a gradient theory of crystal plasticity. J Mech Phys Solids. 2000;48 (8):1565–1595.
  • Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42 (2):475–487.
  • Durst K, Backes B, Göken M. Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater. 2005;52 (11):1093–1097.
  • Durst K, Backes B, Franke O, et al. Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006;54(9):2547–2555.
  • Yang B, Vehoff H. Dependence of nanohardness upon indentation size and grain size – a local examination of the interaction between dislocations and grain boundaries. Acta Mater. 2007;55 (3):849–856.
  • Qiao XG, Starink MJ, Gao N. The influence of indenter tip rounding on the indentation size effect. Acta Mater. 2010;58 (10):3690–3700.
  • Liu G, Ni S, Song M. Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten. Trans Nonferrous Met Soc China. 2015;25 (10):3240–3246.
  • Mukhopadhyay NK, Paufler P. Micro- and nanoindentation techniques for mechanical characterisation of materials. Int Mater Rev. 2006;51 (4):209–245.
  • Li X, Li H, Liu L, et al. The formation mechanism of complex carbides in Nb-V microalloyed steel. Mater Let. 2022;311:131544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.