242
Views
1
CrossRef citations to date
0
Altmetric
Research Article

TEM observation of nano-twinned precipitation phase Al3Mg2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 652-659 | Received 05 May 2022, Accepted 23 Sep 2022, Published online: 10 Oct 2022

References

  • Ahn E-Y, Das H, Hong S-T, et al. Process responses and resultant joint properties of friction stir welding of dissimilar 5083 and 6061 aluminum alloys. J Mech Sci Technol. 2017;31:3955–3960.
  • Han Y, Xue S, Fu R, et al. Influence of hydrogen embrittlement on impact property and microstructural characteristics in aluminum alloy weld. Vacuum. 2020;172:109073.
  • Bai Y, Su H, Wu C. Enhancement of the Al/Mg dissimilar friction stir welding joint strength with the assistance of ultrasonic vibration. Metals-Basel. 2021;11:11071113.
  • Singh VP, Patel SK, Ranjan A, et al. Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. J Mater Res Technol. 2020;9:6217–6256.
  • Zhao YD, Ding ZM, Shen CB, et al. Interfacial microstructure and properties of aluminum–magnesium AZ31B multi-pass friction stir processed composite plate. Mater Des. 2016;94:240–252.
  • Shah LH, Othman NH, Gerlich A. Review of research progress on aluminium–magnesium dissimilar friction stir welding. Sci Technol Weld Joi. 2018;23:256–270.
  • Chen YC, Nakata K. Friction stir lap joining aluminum and magnesium alloys. Scripta Mater. 2008;58:433–436.
  • Mohammadi J, Behnamian Y, Mostafaei A, et al. Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des. 2015;75:95–112.
  • Mohammadi J, Behnamian Y, Mostafaei A, et al. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact. 2015;101:189–207.
  • Rao HM, Jordon JB, Ghaffari B, et al. Fatigue and fracture of friction stir linear welded dissimilar aluminum-to-magnesium alloys. Int J Fatigue. 2016;82:737–747.
  • Rao HM, Ghaffari B, Yuan W, et al. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium. Mater Sci Eng A. 2016;651:27–36.
  • Kostka A, Coelho RS, dos Santos J, et al. Microstructure of friction stir welding of aluminium alloy to magnesium alloy. Scripta Mater. 2009;60:953–956.
  • Firouzdor V, Kou S. Formation of liquid and intermetallics in Al-to-Mg friction stir welding. Metall Mater Trans A. 2010;41:3238–3251.
  • Baghdadi AH, Sajuri Z, Selamat NFM, et al. Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys. Int J Min Met Mater. 2019;26:1285–1298.
  • Baghdadi AH, Selamat NFM, Sajuri Z. Effect of tool offsetting on microstructure and mechanical properties dissimilar friction stir welded Mg-Al alloys. IOP Conf Ser: Mater Sci Eng. 2017;238:012018.
  • Baghdadi AH, Selamat NFM, Sajuri Z, et al. Effect of travel speed on quality and welding efficiency of friction stir welded AZ31B magnesium alloy. Int J Eng Technol. 2018;7:94–99.
  • Zhong XL, Haigh SJ, Zhou X, et al. An in-situ method for protecting internal cracks/pores from ion beam damage and reducing curtaining for TEM sample preparation using FIB. Ultramicroscopy. 2020;219:113135.
  • Hong C, Lin L, Qi R, et al. Plan-view sample preparation of a buried nanodots array by FIB with accurate EDS positioning in thickness direction. Ultramicroscopy. 2019;207:112840.
  • Solla EL, Rodríguez-González B, Aguiar H, et al. Revealing the nanostructure of calcium phosphate coatings using HRTEM/FIB techniques. Mater Charact. 2016;122:148–153.
  • Liu M, Roven HJ, Yu Y. Deformation twins in ultrafine grained commercial aluminum. Int J Mater Res. 2007;98:184–190.
  • Bond WL. Physical properties of crystals: their representation by tensors and matrices. J Phys Chem Solids. 1957;3:338.
  • Connétable D, Thomas O. First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi. Phys Rev B. 2009;79:094101.
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65:349–354.
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci. 1954;45:823–843.
  • Nakayama K, Tsuruta H, Koyama Y. Formation of giant atomic clusters in the β-Samson (β-Al3Mg2) phase of the Al-Mg alloy system. Acta Mater. 2017;128:249–257.
  • Samson S. The crsytal structure of the phase β Mg2Al3. Acta Cryst. 1965;19:401–413.
  • Liu G, Gu J, Ni S, et al. Microstructural evolution of Cu–Al alloys subjected to multi-axial compression. Mater Charact. 2015;103:107–119.
  • Zhao YH, Liao XZ, Zhu YT, et al. Influence of stacking fault energy on nanostructure formation under high pressure torsion. Mater Sci Eng A. 2005;410-411:188–193.
  • Tian C, Han G, Cui C, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy. Mater Des. 2014;64:316–323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.