146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterisation of tensile deformation behaviour of Fe–25Cr–35Ni-based alloy at high temperature

, , , &
Pages 1146-1158 | Received 06 Aug 2022, Accepted 22 Dec 2022, Published online: 03 Jan 2023

References

  • Tan YB, Ma YH, Zhao F. Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy. J Alloy Compd. 2018;741:85–96. doi:10.1016/j.jallcom.2017.12.265.
  • Pu E, Zheng W, Song Z, et al. Effects of temperature and strain rate on tensile deformation behavior of superalloy UNS N10276. Mater Sci Eng A. 2017;699:88–98. doi:10.1016/j.msea.2017.05.085.
  • Yan J, Gu Y, Sun F, et al. Microstructural evolution and deformation behavior of a Fe-Ni base superalloy during aging. J Alloy Compd. 2017;694:739–744. doi:10.1016/j.jallcom.2016.10.078.
  • Kondrat'ev SY, Sviatysheva EV, Anastasiadi GP, et al. Fragmented structure of niobium carbide particles in as-cast modified HP alloys. Acta Mater. 2017;127:267–276. doi:10.1016/j.actamat.2017.01.043.
  • Kondrat’ev SY, Kraposhin VS, Anastasiadi GP, et al. Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy. Acta Mater. 2015;100:275–281. doi:10.1016/j.actamat.2015.08.056.
  • Sun D, Lee H, Jeon C, et al. Evolution of microstructure and creep behavior in an Fe-Ni-Cr-Nb-C alloy during service in hydrocarbon cracker tubes. J Mater Eng Perform. 2019;28:6588–6602. doi:10.1007/s11665-019-04447-8.
  • Guo J, Cheng C, Li H, et al. Microstructural analysis of Cr35Ni45Nb heat-resistant steel after a five-year service in pyrolysis furnace. Eng Fail Anal. 2017;79:625–633. doi:10.1016/j.engfailanal.2017.05.014.
  • Ray AK, Kumar S, Krishna G, et al. Microstructural studies and remnant life assessment of eleven years service exposed reformer tube. Mater Sci Eng A. 2011;529:102–112. doi:10.1016/j.msea.2011.09.003.
  • Carsí M, Llaneza J, Carreo F, et al. Hot forming behavior of a modified Ni–Cr superalloy. Int J Mater Res. 2020;111:968–975. doi:10.3139/146.111965.
  • Li H, Jing H, Xu L, et al. Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700°C: microstructural evolution and cyclic hardening model. Mater Sci Eng A. 2019;744:99–111. doi:10.1016/j.msea.2018.11.150.
  • Lin CY, Wu F, Wang QW, et al. Microstructural evolution of a Ni-Fe-Cr-base superalloy during non-isothermal two-stage hot deformation. Vacuum. 2018;151:283–293. doi:10.1016/j.vacuum.2018.02.034.
  • Zhang JY, Jiang P, Zhu ZL, et al. Tensile properties and strain hardening mechanism of Cr-Mn-Si-Ni alloyed ultra-strength steel at different temperatures and strain rates. J Alloy Compd. 2020;842:155856. doi:10.1016/j.jallcom.2020.155856.
  • Wu Y, Liu Y, Li C, et al. Deformation behavior and processing maps of Ni3al-based superalloy during isothermal hot compression. J Alloy Compd. 2017;712:687–695. doi:10.1016/j.jallcom.2017.04.116.
  • He G, Liu F, Huang L, et al. Hot deformation behaviors of a new hot isostatically pressed nickel based powder metallurgy superalloy. J Mater Res. 2016;31:3567–3579. doi:10.1557/jmr.2016.384.
  • Yang LC, Pan YT, Chen IG, et al. Constitutive relationship modeling and characterization of flow behavior under hot working for Fe–Cr–Ni–W–Cu–Co super-austenitic stainless steel. Metals. 2015;5:1717–1731. doi:10.3390/met5031717.
  • Cao Y, Di H, Zhang J, et al. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe–Ni–Cr alloy (alloy 800H). J Nucl Mater. 2015;456:133–141. doi:10.1016/j.jnucmat.2014.09.030.
  • Cui L, Su H, Yu J, et al. The creep deformation and fracture behaviors of nickel-base superalloy M951g at 900 degrees C. Mater Sci Eng A. 2017;707:383–391. doi:10.1016/j.msea.2017.09.066.
  • Cruzado A, Llorca J, Segurado J. Modeling cyclic deformation of Inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int J Solids Struct. 2017;122:148–161. doi:10.1016/j.ijsolstr.2017.06.014.
  • Pal S, Meraj M. Structural evaluation and deformation features of interface of joint between nano-crystalline Fe–Ni–Cr alloy and nano-crystalline Ni during creep process. Mater Des. 2016;108:168–182. doi:10.1016/j.matdes.2016.06.086.
  • Tang K, Zhang Z, Tian J, et al. Hot deformation behavior and microstructural evolution of supersaturated Inconel 783 superalloy. J Alloy Compd. 2020;860:158541. doi:10.1016/j.jallcom.2020.158541.
  • Liu Y, Hu R, Li J, et al. Deformation characteristics of as-received Haynes230 nickel base superalloy. Mater Sci Eng A. 2008;497:283–289. doi:10.1016/j.msea.2008.07.052.
  • Wu K, Liu G, Hu B, et al. Characterization of hot deformation behavior of a new Ni-Cr-Co based P/M superalloy. Mater Charact. 2010;61:330–340. doi:10.1016/j.matchar.2009.12.013.
  • Kaoumi D, Hrutkay K. Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617. J Nucl Mater. 2014;454:265–273. doi:10.1016/j.jnucmat.2014.08.003.
  • Lin YC, Wen DX, Chen M-S, et al. Improved dislocation density-based models for describing hot deformation behaviors of a Ni-based superalloy. J Mater Res. 2016;31:2415–2429. doi:10.1557/jmr.2016.220.
  • Kang FW, Zhang GQ, Sun JF, et al. Hot deformation behavior of a spray formed superalloy. J Mater Process Technol. 2008;204:147–151. doi:10.1016/j.jmatprotec.2007.11.089.
  • Aghaie-Khafri M, Golarzi N. Forming behavior and workability of hastelloy x superalloy during hot deformation. Mater Sci Eng A. 2008;486:641–647. doi:10.1016/j.msea.2007.11.059.
  • Hrutkay K, Kaoumi D. Tensile deformation behavior of a nickel based superalloy at different temperatures. Mater Sci Eng A. 2014;599:196–203. doi:10.1016/j.msea.2014.01.056.
  • Lin YC, Deng J, Jiang YQ, et al. Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater Des. 2014;55:949–957. doi:10.1016/j.matdes.2013.10.071.
  • Santosh K, Aashranth B, Dipti S, et al. Influence of nitrogen on kinetics of dynamic recrystallization in Fe-Cr-Ni-Mo steel. Vacuum. 2018;156:20–29. doi:10.1016/j.vacuum.2018.07.010.
  • He DG, Lin YC, Huang J, et al. EBSD study of microstructural evolution in a nickel-base superalloy during two-pass hot compressive deformation. Adv Eng Mater. 2018;20:1800129. doi:10.1002/adem.201800129.
  • Zhang H, Zhou H, Qin S, et al. Effect of deformation parameters on twinning evolution during hot deformation in a typical nickel-based superalloy. Mater Sci Eng A. 2017;696:290–298. doi:10.1016/j.msea.2017.04.077.
  • Nithin B, Chattopadhyay K, Phanikumar G. Characterization of the hot deformation behavior and microstructure evolution of a new gamma-gamma’ strengthened cobalt-based superalloy. Metall Mater Trans A. 2018;49A:4895–4905. doi:10.1007/s11661-018-4795-9.
  • Wang GL, Liu JL, Liu JD, et al. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy. Mater Des. 2017;130:131–139. doi:10.1016/j.matdes.2017.05.014.
  • Takakuwa O, Ogawa Y, Yamabe J, et al. Hydrogen-induced ductility loss of precipitation-strengthened Fe-Ni-Cr-based superalloy. Mater Sci Eng A. 2018;739:335–342. doi:10.1016/j.msea.2018.10.040.
  • Shaban GM, Eghbali B. Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel. Mater Sci Eng A. 2018;730:380–390. doi:10.1016/j.msea.2018.06.025.
  • Ou M, Ma Y, Ge H, et al. Effect of long-term aging on the microstructure, stress rupture properties and deformation mechanisms of a new cast nickel base superalloy. Mater Sci Eng A. 2018;736:76–86. doi:10.1016/j.msea.2018.08.096.
  • Van-Tung P, Zhang X, Li Y, et al. Microscale modeling of creep deformation and rupture in nickel-based superalloy in 617 at high temperature. Mech Mater. 2017;114:215–227. doi:10.1016/j.mechmat.2017.08.008.
  • Kumar SSS, Raghu T, Bhattacharjee PP, et al. Work hardening characteristics and microstructural evolution during hot deformation of a nickel superalloy at moderate strain rates. J Alloy Compd. 2017;709:394–409. doi:10.1016/j.jallcom.2017.03.158.
  • Ernst F, Li DQ, Kahn H, et al. The carbide M7C3 in low temperature carburized austenitic stainless steel. Acta Mater. 2011;59:2268–2276. doi:10.1016/j.actamat.2010.11.058.
  • Attarian M, Taheri AK. Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen. Mater Sci Eng A. 2016;659:104–118. doi:10.1016/j.msea.2016.02.046.
  • Lee HJ, Subramanian GO, Kim SH, et al. Effect of pressure on the corrosion and carburization behavior of chromia-forming heat-resistant alloys in high-temperature carbon dioxide environments. Corros Sci. 2016;659:104–118. doi:10.1016/j.corsci.2016.06.004.
  • Cheng L, Xue X, Tang B, et al. Deformation behavior of hot-rolled In718 superalloy under plane strain compression at elevated temperature. Mater Sci Eng A. 2014;606:24–30. doi:10.1016/j.msea.2014.03.075.
  • Yuan H, Liu WC. Effect of the δ phase on the hot deformation behavior of Inconel 718. Mater Sci Eng A. 2005;408:281–289. doi:10.1016/j.msea.2005.08.126.
  • Hu HE, Zhen L, Yang L, et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Mater Sci Eng A. 2008;488:64–67. doi:10.1016/j.msea.2007.10.051.
  • Yi H, Wei D, Xie R, et al. Microstructure refinement of a transformation-induced plasticity high-entropy alloy. Materials. 2021;14(5):1196. doi:10.3390/ma14051196.
  • Huang L, Qi F, Hua P, et al. Discontinuous dynamic recrystallization of Inconel 718 superalloy during the superplastic deformation. Metall Mater Trans. 2015;46A:4276–4285. doi:10.1007/s11661-015-3031-0.
  • Wang Y, Wang L, Fang M, et al. Hot deformation and dynamic recrystallization behavior of CoCrNi and (CoCrNi)94Ti3Al3 medium entropy alloys. Metals. 2020;10:1341. doi:10.3390/met10101341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.