596
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strong and ductile medium manganese steel processed by low-temperature partitioning

, , &
Pages 1214-1222 | Received 31 Aug 2022, Accepted 26 Dec 2022, Published online: 05 Jan 2023

References

  • Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater. 2010;63:815–818.
  • He BB, Luo HW, Huang MX. Experimental investigation on a novel medium Mn steel combining transformation-induced plasticity and twinning-induced plasticity effects. Int J Plast. 2016;78:173–186.
  • Li ZC, Ding H, Misra RDK, et al. Microstructural evolution and deformation behavior in the Fe-(6,8.5)Mn-3Al-0.2C TRIP steels. Mat Sci Eng A. 2016;672:161–169.
  • Jeong MS, Park TM, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure. Scripta Mater. 2021;190:16–21.
  • Han J, Lee S, Jung J, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel. Acta Mater. 2014;78:369–377.
  • He BB, Hu B, Yen HW, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032.
  • Wu XL, Yang MX, Yuan FP, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 2016;112:337–346.
  • Li Z, Pradeep KG, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature. 2016;534:227–230.
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing. Mat Sci Eng A. 2011;528:6661–6666.
  • Magalhaes AS, Moutinh LD, Oliveira IR, et al. Ultrafine grained microstructure in a medium manganese steel after warm rolling without intercritical annealing. ISIJ Int. 2017;57:1121–1128.
  • Sun B, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mat Sci Eng A. 2018;729:496–507.
  • Sohn SS, Choi K, Kwak J, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater. 2014;78:181–189.
  • Wang M, Tasan CC, Ponge D, et al. Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Mater. 2014;79:268–281.
  • Lee S, De Cooman BC. Effect of the intercritical annealing temperature on the mechanical properties of 10 Pct Mn multi-phase steel. Metall Mater Trans A. 2014;45:5009–5016.
  • Lee C, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater. 2015;84:1–8.
  • Cai ZH, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mat Sci Eng A. 2013;560:388–395.
  • Trang TTT, Heo Y. Effect of solution treatment temperature on microstructure evolution and tensile property of a medium Mn steel having a lamellar structure. Mat Sci Eng A. 2021;805:140578.
  • Zhang X, Miyamoto G, Toji Y, et al. Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe-2Mn-1.5Si-0.3C alloy. Acta Mater. 2021;209:116772.
  • Han J, Lee Y. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater. 2014;67:354–361.
  • Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater. 2014;65:251–258.
  • Luo HW, Qiu CH, Dong H, et al. Experimental and numerical analysis of influence of carbide on austenitisation kinetics in 5Mn TRIP steel. Mater Sci Tech. 2014;30:1367–1377.
  • Speer J, Rana R, Matlock D, et al. Processing variants in medium-Mn steels. Metals (Basel). 2019;9:771.
  • van Tol RT, Kim JK, Zhao L, et al. α′-Martensite formation in deep-drawn Mn-based TWIP steel. J Mater Sci. 2012;47:4845–4850.
  • Cullity BD, Graham CD. Introduction to magnetic materials. Piscataway (NJ): IEEE Press; 2009.
  • van Dijk NH, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005;53:5439–5447.
  • Ungar T, Dragomir I, Revesz A, et al. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J Appl Crystallogr. 1999;32:992–1002.
  • Ungar T, Gubicza J, Ribarik G, et al. Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. J Appl Crystallogr. 2001;34:298–310.
  • Ungár T. Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater. 2004;51:777–781.
  • Ungár T, Borbély A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett. 1996;69:3173–3175.
  • HajyAkbary F, Sietsma J, Bottger AJ, et al. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures. Mat Sci Eng A. 2015;639:208–218.
  • Krauss G. Solidification, segregation, and banding in carbon and alloy steels. Metall Mater Trans B. 2003;34:781–792.
  • HajyAkbary F, Sietsma J, Petrov RH, et al. A quantitative investigation of the effect of Mn segregation on microstructural properties of quenching and partitioning steels. Scripta Mater. 2017;137:27–30.
  • Speer JG, Edmonds DV, Rizzo FC, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr Opin Solid State Mater Sci. 2004;8:219–237.
  • Speer J, Matlock DK, De Cooman BC, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–2622.
  • Da Silva EP, De Knijf D, Xu W, et al. Isothermal transformations in advanced high strength steels below martensite start temperature. Mater Sci Tech. 2015;31:808–816.
  • Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc London Sect A. 1949;62:49–62.
  • Taylor GI. The mechanism of plastic deformation of crystals. Part I Theoretical Proc R Soc A. 1934;145:362–387.
  • Yang H, Bhadeshia H. Austenite grain size and the martensite-start temperature. Scripta Mater. 2009;60:493–495.
  • Andrews K. Empirical formulae for the calculation of some transformation temperatures. J Iron Steel Inst. 1965;203:721–727.
  • Breedis JF. Influence of dislocation substructure on martensitic transformation in stainless steel. Acta Metall. 1965;13:239–250.
  • Chatterjee S, Wang HS, Yang JR, et al. Mechanical stabilisation of austenite. Mater Sci Tech. 2006;22:641–644.
  • Chiang J, Lawrence B, Boyd JD, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mat Sci Eng A. 2011;528:4516–4521.
  • Jacques PJ, Ladriere J, Delannay F. On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A. 2001;32:2759–2768.
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater. 2009;57:533–543.
  • Yen H, Ooi SW, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater. 2015;82:100–114.
  • Park YB, Kestens L, Jonas JJ. Effect of internal stresses in cold rolled IF steel on the orientations of recrystallized grains. ISIJ Int. 2000;40:393–401.
  • Kajiwara K, Sato M, Hashimoto T, et al. Evaluation of internal stress in individual grains of cold-rolled stainless steel by energy dispersive x-ray diffraction. ISIJ Int. 2013;53:165–169.
  • Meng QP, Rong YH, Hsu TY. Effect of internal stress on autocatalytic nucleation of martensitic transformation. Metall Mater Trans A. 2006;37:1405–1411.
  • Jacques P, Furnemont Q, Mertens A, et al. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity. Philo Mag A. 2001;81:1789–1812.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.