130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure and characteristic studies of ZrAlNiCu films prepared by magnetron sputtering

, , , &
Pages 1278-1287 | Received 07 Oct 2022, Accepted 28 Dec 2022, Published online: 09 Jan 2023

References

  • Chu JP, Huang JC, Jang JSC, et al. Thin film metallic glasses: preparations, properties, and applications. JOM. 2010;62:19–24.
  • Yu C-C, Wu H-j, Deng P-Y, et al. Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules. Sci Rep. 2017;7:45177.
  • Yu C-C, Wu H-j, Agne MT, et al. Titanium-based thin film metallic glass as diffusion barrier layer for PbTe-based thermoelectric modules. APL Mater. 2019;7:013001.
  • Wei X, Ying C, Wu J, et al. Fabrication, corrosion, and mechanical properties of magnetron sputtered Cu–Zr–Al metallic glass thin film. Materials (Basel). 2019;12:4147.
  • Panagiotopoulos NT, Georgarakis K, Jorge Jr AM, et al. Advanced ultra-light multifunctional metallic-glass wave springs. Mater Des. 2020;192:108770.
  • Abboud M, Motallebzadeh A, Verma N, et al. Nanoscratch behavior of metallic glass/crystalline nanolayered composites. JOM. 2019;71:593–601.
  • Cai C-N, Zhang C, Sun Y-S, et al. Zrcufealag thin film metallic glass for potential dental applications. Intermetallics. 2017;86:80–87.
  • Chu JP, Lai B-Z, Yiu P, et al. Metallic glass coating for improving diamond dicing performance. Sci Rep. 2020;10:12432.
  • Chu JP, Yu C-C, Tanatsugu Y, et al. Non-stick syringe needles: beneficial effects of thin film metallic glass coating. Sci Rep. 2016;6:31847.
  • Jia H, Liu F, An Z, et al. Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films. 2014;561:2–27.
  • Subramanian B, Maruthamuthu S, Rajan ST. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels. Int J Nanomed. 2015;10:17–29.
  • Yiu P, Diyatmika W, Bönninghoff N, et al. Thin film metallic glasses: properties, applications and future. J Appl Phys. 2020;127:030901.
  • Kube SA, Sohn S, Ojeda-Mota R, et al. Compositional dependence of the fragility in metallic glass forming liquids. Nat Commun. 2022;13:3708.
  • Cho H, Kim HY, Miyazaki S. Fabrication and characterization of Ti–Ni shape memory thin film using Ti/Ni multilayer technique. Sci Technol Adv Mater. 2005;6:678–683.
  • Rauf A, Guo CY, Fang YN, et al. Binary Cu-Zr thin film metallic glasses with tunable nanoscale structures and properties. J Non-Cryst Solids. 2018;498:95–102.
  • Rauf A, Fang Y, Zhang H, et al. Thickness effects on microstructure, mechanical and soft magnetic properties of sputtered FeZr thin film metallic glass. J Non-Cryst Solids. 2019;521:119500.
  • Marimuthu KP, Han G, Lee H. Effect of modulation ratio on the mechanical behavior of multilayer-thin-film metallic glasses. J Mater Res Technol. 2022;16:216–228.
  • Lee J, Huang K-H, Hsu K-C, et al. Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering. Surf Coat Technol. 2015;278:132–137.
  • Lee J, Tung H-C, Duh J-G. Enhancement of mechanical and thermal properties in Zr–Cu–Ni–Al–N thin film metallic glass by compositional control of nitrogen. Mater Lett. 2015;159:369–372.
  • Chu J-H, Chen H-W, Chan Y-C, et al. Modification of structure and property in Zr-based thin film metallic glass via processing temperature control. Thin Solid Films. 2014;561:38–42.
  • Sharma P, Zhang W, Amiya K, et al. Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. J Nanosci Nanotechnol. 2005;5:416–420.
  • Jeong U, Han J, Marimuthu KP, et al. Evaluation of mechanical properties of Zr–Cu–Al–Ni TFMG using nanoindentation. J Mater Res Technol. 2021;12:2368–2382.
  • Song H, Oh S, Yoon H, et al. Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting. Nano Energy. 2017;42:1–7.
  • Tsai D-C, Chang Z-C, Kuo B-H, et al. Wide variation in the structure and physical properties of reactively sputtered (TiZrHf)N coatings under different working pressures. J Alloys Compd. 2018;750:350–359.
  • Koenig TR, Rao Z, Chason E, et al. The microstructural and stress evolution in sputter deposited Ni thin films. Surf Coat Technol. 2021;412:126973.
  • Nandam SH, Ivanisenko Y, Schwaiger R, et al. Cu-Zr nanoglasses: atomic structure, thermal stability and indentation properties. Acta Mater. 2017;136:181–189.
  • Adjaoud O, Albe K. Microstructure formation of metallic nanoglasses: insights from molecular dynamics simulations. Acta Mater. 2018;145:322–330.
  • Adibi S, Branicio PS, Zhang Y-W, et al. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses. J Appl Phys. 2014;116:043522.
  • Adibi S, Sha Z-D, Branicio PS, et al. A transition from localized shear banding to homogeneous superplastic flow in nanoglass. Appl Phys Lett. 2013;103:211905.
  • Brognara A, Best JP, Djemia P, et al. Effect of composition and nanostructure on the mechanical properties and thermal stability of Zr100-xCux thin film metallic glasses. Mater Des. 2022;219:110752.
  • Gu J, Song M, Ni S, et al. Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Mater Des. 2013;47:706–710.
  • Khamseh S, Nose M, Kawabata T, et al. Influence of total gas pressure on the microstructure and properties of CrAlN films deposited by a pulsed DC balanced magnetron sputtering system. J Alloys Compd. 2010;503:389–391.
  • Guo Y, Ma D, Li X, et al. Effects of room temperature rolling in different directions on magnetic properties, electrical properties and bending ductility of Fe85P11C2B2 amorphous alloy. J Non-Cryst Solids. 2022;596:121875.
  • Kim BG, Song JS, Kim HS, et al. Magnetic properties of very high permeability, low coercivity, and high electrical resistivity in Fe87Zr7B5Ag1 amorphous alloy. J Appl Phys. 1995;77:5298–5302.
  • Chan K-Y, Teo B-S. Sputtering power and deposition pressure effects on the electrical and structural properties of copper thin films. J Mater Sci. 2005;40:5971–5981.
  • Chu JP, Kuo C-H, Lo C-T. Annealing-induced extensive solid-state amorphization in metallic films, US20080128055A1, 2008.
  • Ghidelli M, Gravier S, Blandin JJ, et al. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015;90:232–241.
  • Bignoli F, Rashid S, Rossi E, et al. Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition. Mater Des. 2022;221:110972.
  • Mitterer C, Mayrhofer PH, Musil J. Thermal stability of PVD hard coatings. Vacuum. 2003;71:279–284.
  • Chaudhari P. Grain growth and stress relief in thin films. J Vac Sci Technol. 1972;9:520–522.
  • Hu G, Kong X, Wang Y, et al. Formation mechanism of amorphous layer at the interface of Si(111) substrate and AlN buffer layer for GaN. J Mater Sci Lett. 2003;22:1581–1583.
  • Ivanisenko Y, Kübel C, Nandam SH, et al. Structure and properties of nanoglasses. Adv Eng Mater. 2018;20:1800404.
  • Liedtke D. Wärmebehandlung von Eisenwerkstoffen II. 7th ed. Tübingen, Germany: Expert-Verlag; 2018.
  • Tsai D-C, Chen E-C, Chang Z-C, et al. Effect of nitrogen partial pressure on the structural, mechanical, and electrical properties of (CrHfNbTaTiVZr)N coatings deposited by reactive magnetron sputtering. Coatings. 2022;12:437.
  • Hultman L, Sundgren J-E, Greene JE. Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films. J Appl Phys. 1989;66:536–544.
  • Mahieu S, Ghekiere P, De Winter G, et al. Biaxially aligned titanium nitride thin films deposited by reactive unbalanced magnetron sputtering. Surf Coat Technol. 2006;200:2764–2768.
  • Greene JE, Sundgren J-E, Hultman L, et al. Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering. Appl Phys Lett. 1995;67:2928–2930.
  • Drüsedau TP, Bläsing J. Optical and structural properties of highly c-axis oriented aluminum nitride prepared by sputter-deposition in pure nitrogen. Thin Solid Films. 2000;377:27–31.
  • Kwon J-S, Park C-H, Choi J-W, et al. Preparation and characterization of the sputtered TiAlN coatings using a Ti–Al alloy metal target. J Nanosci Nanotechnol. 2019;19:6493–6498.
  • Müller MH. Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes. J Vac Sci Technol A. 1986;4:184–188.
  • Siegel RW, Fougere GE. Mechanical properties of nanophase metals. Nanostruct Mater. 1995;6:205–216.
  • Onufriev SV, Savvatimskiy AI, Muboyadzhyan SA. Investigation of physical properties of 0.9ZrN + 0.1ZrO2 ceramics at 2000–4500 K by current pulse heating. Mater Res Express. 2020;6:125554.
  • Chung CK, Chen TS. Effect of nitrogen flow ratios on the microstructure and properties of Ta–Al–N thin films by reactive cosputtering. J Electrochem Soc. 2008;156:H119.
  • Pearton SJ. Ion implantation for isolation of III-V semiconductors. Mater Sci Rep. 1990;4:313–363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.