202
Views
2
CrossRef citations to date
0
Altmetric
Research Article

High aspect ratio TiO2–Mn3O4 heterostructure: proficient nanorods for pathogen inhibition and supercapacitor application

, , , , , & show all
Pages 1687-1696 | Received 30 Nov 2022, Accepted 10 Feb 2023, Published online: 23 Feb 2023

References

  • Zhou W, Liu X, Sang Y, et al. Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl Mater Interfaces. 2014;6:4578–4586.
  • Guan C, Li X, Wang Z, et al. Nanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance. Adv Mater. 2012;24:4186–4190.
  • Xing Z, Zhang J, Cui J, et al. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl Catal B. 2018;225:452–467.
  • Fu J, Yu J, Jiang C, et al. G-C3N4-based heterostructured photocatalysts. Adv Energy Mater. 2018;8:1701503-1701531.
  • Yan J, Liu J, Fan Z, et al. High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon N Y. 2012;50:2179–2188.
  • Zhi M, Xiang C, Li J, et al. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale. 2013;5:72–88.
  • Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013;13:2151–2157.
  • Sarkar D, Khan GG, Singh AK, et al. High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core–shell nanowire heterostructure arrays. J Phys Chem C. 2013;117:15523–15531.
  • Hu C-C, Chang K-H, Lin M-C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006;6:2690–2695.
  • Zhu J, Wu Q, Li J. Review and prospect of Mn3O4-based composite materials for supercapacitor electrodes. ChemistrySelect. 2020;5:10407–10423.
  • Wang Y, Liu M, Liu Y, et al. A novel mica-titania@ graphene core-shell structured antistatic composite pearlescent pigment. Dyes Pigm. 2017;136:197–204.
  • Kausar F, Varghese A, Pinheiro D, et al. Recent trends in photocatalytic water splitting using titania based ternary photocatalysts – a review. Int J Hydrogen Energy. 2022;47:22371–22402.
  • Wang Z, Hai J, Wu J-M, et al. Surface diffusion enhancement of titania by surface fluorine modification to boost energy storage capacities. Appl Surf Sci. 2023;612:155843.
  • Bortamuly R, Naresh V, Das MR, et al. Titania supported bio-derived activated carbon as an electrode material for high-performance supercapacitors. J Energy Storage. 2021;42:103144.
  • Pant B, Park M, Park S-J. TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers. 2019;11:899.
  • Pant B, Pant HR, Park M. Fe1− xS modified TiO2 NPs embedded carbon nanofiber composite via electrospinning: a potential electrode material for supercapacitors. Molecules. 2020;25:1075.
  • Johnson JR, Kuskowski MA, Smith K, et al. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis. 2005;191:1040–1049.
  • Shamaila S, Zafar N, Riaz S, et al. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 2016;6:71.
  • Younis AB, Haddad Y, Kosaristanova L, et al. Titanium dioxide nanoparticles: recent progress in antimicrobial applications. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2022;e1860.
  • Wei C, Lin WY, Zainal Z, et al. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol. 1994;28:934–938.
  • Chowdhury A-N, Azam MS, Aktaruzzaman M, et al. Oxidative and antibacterial activity of Mn3O4. J Hazard Mater. 2009;172:1229–1235.
  • Chouchaine A, Marzouk-Trifi I, Trifi B, et al. Synthesis, characterization of Mn3O4: adsorption application and antibacterial evaluation. J Chil Chem Soc. 2022;67:5582–5586.
  • Philip Raja S, Jayamoorthy K, Dhanalekshmi K, et al. Mn3O4 nanoparticles bearing 5-amino-2-mercapto benzimidazole moiety as antibacterial and antifungal agents. J Biomol Struct Dyn. 2021;40:7084–7090.
  • Belkhedkar MR, Ubale AU. Physical properties of nanostructured Mn3O4 thin films synthesized by SILAR method at room temperature for antibacterial application. J Mol Struct. 2014;1068:94–100.
  • Amna T, Hassan MS, Shin W-S, et al. TiO2 nanorods via one-step electrospinning technique: a novel nanomatrix for mouse myoblasts adhesion and propagation. Colloids Surf B. 2013;101:424–429.
  • Hassan MS, Amna T, Yang O-B, et al. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf B. 2012;97:201–206.
  • Amna T, Hassan MS, Sheikh FA, et al. Natural mulberry biomass fibers doped with silver as an antimicrobial textile: a new generation fabric. Text Res J. 2021;91:2581–2587.
  • Hassan MS, Amna T, Kim HY, et al. Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof. Compos Part B Eng. 2013;45:904–910.
  • Shaik DPMD, Kumar MVS, Reddy PNK, et al. High electrochemical performance of spinel Mn3O4 over Co3O4 nanocrystals. J Mol Struct. 2021;1241:130619.
  • Chen S-S, Hsi H-C, Nian S-H, et al. Synthesis of N-doped TiO2 photocatalyst for low-concentration elemental mercury removal under various gas conditions. Appl Catal, B. 2014;160-161:558–565.
  • Sharma JK, Srivastava P, Ameen S, et al. Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: excellent thermal catalytic performance and chemical sensing behavior. J Colloid Interface Sci. 2016;472:220–228.
  • Zhang L, He Y, Ye P, et al. Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites. J Alloys Compd. 2013;549:105–113.
  • Fan X, Lu Y, Xu H, et al. Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J Mater Chem. 2011;21:18753–18760.
  • Hu C-C, Tsou T-W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun. 2002;4:105–109.
  • Yang F, Yao J, Liu F, et al. Ni–Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. J Mater Chem A. 2013;1:594–601.
  • Ann LC, Mahmud S, Bakhori SKM, et al. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram Int. 2014;40:2993–3001.
  • Azam A, Ahmed AS, Oves M, et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed. 2012;7:6003.
  • Du T, Chen S, Zhang J, et al. Antibacterial activity of manganese dioxide nanosheets by ros-mediated pathways and destroying membrane integrity. Nanomaterials. 2020;10:1545.
  • Zhang P, Cao L, Wang X, et al. Improvement of electrochemical performance of titania nanowires for supercapacitor electrodes by in-situ growth of polyaniline nanoparticles. Ceram Int. 2022;48:1731–1739.
  • Zhang J, Wang Y, Qin Y, et al. A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. J Solid State Chem. 2017;246:269–277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.