271
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of strength in stainless steel weld joints using ball indentation technique

, , &
Pages 1709-1727 | Received 04 Oct 2022, Accepted 12 Feb 2023, Published online: 23 Feb 2023

References

  • Bhaduri AK, Laha K, Ganesan V, et al. Advanced materials for structural components of Indian sodium-cooled fast reactors. Int J Press Vessel Pip. 2016;139–140:123–136. doi:10.1016/j.ijpvp.2016.02.027
  • Xie W, Yang C. Microstructure, mechanical properties and corrosion behavior of austenitic stainless steel sheet joints welded by gas tungsten arc (GTA) and ultrasonic–wave–assisted gas tungsten pulsed arc (U–GTPA). Arch Civ Mech Eng. 2020;20:43. doi:10.1007/s43452-020-00044-y
  • Tseng KH. Development and application of oxide-based flux powder for tungsten inert gas welding of austenitic stainless steels. Powder Technol. 2013;233:72–79. doi:10.1016/j.powtec.2012.08.038
  • Vasudevan M. Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Mater Eng Perform. 2017;26:1325–1336. doi:10.1007/s11665-017-2517-x
  • Schönmaier H, Krein R, Schmitz-Niederau M, et al. Influence of the heat input on the dendritic solidification structure and the mechanical properties of 2.25Cr-1Mo-0.25V submerged-arc weld metal. J Mater Eng Perform. 2021. doi:10.1007/s11665-021-05922-x
  • Vasudevan M. Effect of A-TIG welding process on the weld attributes of type 304LN and 316LN stainless steels. J Mater Eng Perform. 2017;26:1325–1336. doi:10.1007/s11665-017-2517-x
  • Ragavendran M, Kumar JG, Vasudevan M. Evaluation of tensile properties using uni-axial and ball indentation testing and correlation with microstructure variations across the 316LN stainless steel weld joints. Mater Sci Eng A. 2022;832:142445. doi:10.1016/j.msea.2021.142445
  • Khoshnaw FM, Hamakhan IA. Determination of the mechanical properties of austenitic stainless steel weldments by using stress strain microprobe. Mater Sci Eng A. 2006;426:1–3. doi:10.1016/j.msea.2006.03.041
  • Wu S, Xu T, Song M, et al. Mechanical properties characterisation of welded joint of austenitic stainless steel using instrumented indentation technique. Mater High Temp. 2016;33:270–275. doi:10.1080/09603409.2016.1187463
  • Das G, Das M, Sinha S, et al. Characterization of cast stainless steel weld pools by using ball indentation technique. Mater Sci Eng A. 2009;513–514:389–393. doi:10.1016/j.msea.2009.02.007
  • Sakthivel T, Vasudevan M, Laha K, et al. Comparison of creep rupture behaviour of type 316L(N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Mater Sci Eng A. 2011;528:6971–6980. doi:10.1016/j.msea.2011.05.052
  • Kumar JG, Vijayanand VD, Nandagopal M, et al. Evaluation of variation of tensile strength across 316LN stainless steel weld joint using automated ball indentation technique. Mater High Temp. 2015;32:619–626. doi:10.1179/1878641315Y.0000000008
  • ASM Handbook Volume 8: Mechanical Testing and Evaluation - ASM International. [cited 5 Jan 2023]. https://www.asminternational.org/search/-/journal_content/56/10192/06772G/PUBLICATION.
  • American Welding Society. Committee on Mechanical Testing of Welds., American National Standards Institute., American Welding Society. Technical Activities Committee. 2007. Standard methods for mechanical testing of welds. 135.
  • Gao M, Mei SW, Wang ZM, et al. Characterisation of laser welded dissimilar Ti/steel joint using Mg interlayer. Sci Technol Weld Join. 2012;17:269–276. doi:10.1179/1362171812Y.0000000002
  • AmericanSocietyforTestingandMaterials. ASTM E8/E8M – Standard test methods for tension testing of metallic materials; 2021. doi:10.1520/E0008_E0008M-13A
  • Australian Standard. AS-2205-3-1, 2003. Methods for destructive testing of welds in metal – Transverse Butt Tensile Tests; Standards Australia; 2003.
  • Peel M, Steuwer A, Preuss M, et al. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater. 2003;51:4791–4801. doi:10.1016/S1359-6454(03)00319-7
  • Turski M, Smith MC, Bouchard PJ, et al. Spatially resolved materials property data from a uniaxial cross-weld tensile test. J Press Vessel Technol. 2009;131:061406-1–061406-7. doi:10.1115/1.4000196
  • Siefert W, Rule J, Alexandrov B, et al. Cross weld tensile testing with digital image correlation to determine local strain response. In: Pressure vessels & Piping conference PVP2020-21580. Minneapolis (MN): American Society of Mechanical Engineers; 2020. p. 1–7.
  • Haggag FM. 1989. Field indentation microprobe for structural integrity evaluation (U.S. Patent No. 4,852,397).
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. doi:10.1557/JMR.1992.1564
  • Fischer-Cripps A. A review of analysis methods for sub-micron indentation testing. Vacuum. 2000;58:569–585. doi:10.1016/S0042-207X(00)00377-8
  • Mathew MD, Murty KL. Non-destructive studies on tensile and fracture properties of molybdenum at low temperatures (148 to 423 K). J Mater Sci. 1999;34:1497–1503. doi:10.1023/A:1004547709783
  • Chatterjee S, Panwar S, Madhusoodanan K. Measurement of mechanical properties of a reactor operated Zr–2.5Nb pressure tube using an in situ cyclic ball indentation system. Nucl Eng Des. 2015;288:19–26. doi:10.1016/j.nucengdes.2015.03.015
  • Hori K, Kusano K, Myoga T. Development of hot wire TIG welding methods using pulsed current to heat filler wire – research on pulse heated hot wire TIG welding processes. Weld Int. 2004;18:456–468. doi:10.1533/wint.2004.3281
  • Fang C, Xin J, Dai W, et al. Deep penetration laser welding of austenitic stainless steel thick-plates using a 20 kW fiber laser. J Laser Appl. 2020;32:012009. doi:10.2351/1.5094176
  • Wang XN, Zhang SH, Zhou J, et al. Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800 MPa hot-rolled Nb-Ti-Mo microalloyed steels. Opt Lasers Eng. 2017;91:86–96. doi:10.1016/j.optlaseng.2016.11.010
  • Yan J, Gao M, Zeng X. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Opt Lasers Eng. 2010;48:512–517. doi:10.1016/j.optlaseng.2009.08.009
  • Moore PL, Howse DS, Wallach ER. Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels. Sci Technol Weld Join. 2004;9:314–322. doi:10.1179/136217104225021652
  • Subashini L, Prabhakar KVP, Gundakaram RC, et al. Single pass laser-arc hybrid welding of maraging steel thick sections. Mater Manuf Process. 2016;31:2186–2198. doi:10.1080/10426914.2016.1221099
  • Ueguri S, Tabata Y, Shimizu T, et al. Control of deposition rates in hot wire TIG welding. Weld Int. 1987;1:736–742. doi:10.1080/09507118709451085
  • Pavan AR, Chandrasekar N, Arivazhagan B, et al. Study of arc characteristics using varying shielding gas and optimization of activated-tig welding technique for thick AISI 316L(N) plates. CIRP J Manuf Sci Technol. 2021;35:675–690. doi:10.1016/j.cirpj.2021.08.013
  • 2021. BPVC Section IX-Welding, Brazing, and Fusing Qualifications. ASME.
  • Tamil Selvan CP, Dinaharan I, Palanivel R, et al. Predicting the tensile strength and deducing the role of processing conditions of hot wire gas tungsten arc welded pure nickel tubes using an empirical relationship. Int J Press Vessel Pip. 2020;188:104220. doi:10.1016/j.ijpvp.2020.104220
  • Ganesh Kumar J, Ganesan V, Laha K. High temperature tensile properties of 316LN stainless steel investigated using automated ball indentation technique. Mater High Temp. 2019;36:48–57. doi:10.1080/09603409.2018.1456039
  • Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Hoboken (NJ): Wiley; 2005.
  • Chen MH, Chou CP. Effect of thermal cycles on ferrite content of austenitic stainless steel. Sci Technol Weld Join. 1999;4:58–62. doi:10.1179/stw.1999.4.1.58
  • Olson DL. Prediction of austenitic weld metal microstructure and properties. Weld J (Miami, FL). 1985;64:281s–295s.
  • Wu C, Li S, Zhang C, et al. Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates. J Mater Sci. 2016;51:2529–2539. doi:10.1007/s10853-015-9565-0
  • Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater Des. 2011;32:3617–3623. doi:10.1016/j.matdes.2011.02.017
  • Krishnan KN, Prasad Rao K. Effect of microstructure on stress corrosion cracking behaviour of austenitic stainless steel weld metals. Mater Sci Eng A. 1991;142:79–85. doi:10.1016/0921-5093(91)90756-D
  • Setia P, Venkateswaran T, Tharian KT, et al. Influence of Si content on the microstructure and mechanical properties of silicon stainless steel. Mater Sci Eng A. 2022;829:142141. doi:10.1016/j.msea.2021.142141
  • Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738–2746. doi:10.1016/j.msea.2010.01.004
  • Ganesan V, Laha K, Nandagopal M, et al. Effect of nitrogen content on dynamic strain ageing behaviour of type 316LN austenitic stainless steel during tensile deformation. Mater High Temp. 2014;31:162–170. doi:10.1179/1878641314Y.0000000009
  • Murty KL, Miraglia PQ, Mathew MD, et al. Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int J Press Vessel Pip. 1999;76:361–369. doi:10.1016/S0308-0161(99)00006-X
  • Kumar S, Samantaray D, Aashranth B, et al. Dependency of rate sensitive DRX behaviour on interstitial content of a Fe-Cr-Ni-Mo alloy. Mater Sci Eng A. 2019;743:148–158. doi:10.1016/j.msea.2018.11.062
  • Wang H, Jing H, Zhao L, et al. Dislocation structure evolution in 304L stainless steel and weld joint during cyclic plastic deformation. Mater Sci Eng A. 2017;690:16–31. doi:10.1016/j.msea.2017.02.090
  • Zhang J, Yu L, Ma Z, et al. Characterization of microstructure and stress corrosion cracking susceptibility in a multi-pass austenitic stainless steel weld joint by narrow-gap TIG. Metall Mater Trans A. 2020;51:4549–4562. doi:10.1007/s11661-020-05871-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.