366
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alloying, phases and magnetic behaviour of mechanically alloyed FeNiMnCu-based high entropy alloys

, ORCID Icon &
Pages 1745-1759 | Received 26 Nov 2022, Accepted 12 Feb 2023, Published online: 27 Feb 2023

References

  • Yeh J-W, Chen S-K, Lin S-J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299–303.
  • Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375-377:213–218.
  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511.
  • Gao MC, Yeh J-W, Liaw PK, et al. High-entropy alloys: fundamentals and applications. Switzerland: Springer International Publishing; 2016.
  • Murty BS, Yeh J-W, Ranganathan S, et al. High-entropy alloys. Elsevier; 2019; 388.
  • Yeh J-W. Recent progress in high-entropy alloys. Eur J Control. 2006;31:633–648.
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014; 61:1–93.
  • Sharma P, Dwivedi VK, Dwivedi SP. Development of high entropy alloys: A review. 1st international Conference on Energy, Materials Sciences and Mechanical Engineering (EMSME); Oct 31–Nov 01, 2020; Delhi, INDIA. Elsevier, 502–509.
  • Li WD, Xie D, Li DY, et al. Mechanical behavior of high-entropy alloys [Review]. Prog Mater Sci. 2021;118:142.
  • Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloy Compd. 2018; 760:15–30.
  • Tsai M-H, Yeh J-W. High-entropy alloys: a critical review. Mater Res Lett. 2014;2(3):107–123.
  • Nene SS, Frank M, Liu K, et al. Corrosion-resistant high entropy alloy with high strength and ductility. Scr Mater. 2019;166:168–172.
  • Mishra RK, Shahi RR. Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M=Mn, Co) high entropy alloys. J Magn Magn Mater. 2017;442:218–223.
  • Güler Ö, Şimşek T, Özkul İ, et al. Investigation of shape memory characteristics and production of HfZrTiFeMnSi high entropy alloy by mechanical alloying method. Curr Appl Phys. 2022;33:1–11.
  • Torralba JM, Alvaredo P, García-Junceda A. High-entropy alloys fabricated via powder metallurgy. A critical review. Powder Metall. 2019;62(2):84–114.
  • Nikkhah MR, Gheisari K. Effect of CO addition on the structural evolution and magnetic properties of nanocrystalline Fe50Ni50-xCox alloys prepared by mechanical alloying. J Supercond Novel Magn. 2023;36(1):315–325.
  • Yakın A, Şimşek T, Avar B, et al. The effect of Cr and Nb addition on the structural, morphological, and magnetic properties of the mechanically alloyed high entropy FeCoNi alloys. Appl Phys A. 2022;128(8):686.
  • Zuo TT, Li RB, Ren XJ, et al. Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J Magn Magn Mater. 2014;371:60–68.
  • Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61(7):2628–2638.
  • Guo S, Liu CT. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci: Mater Int. 2011;21(6):433–446.
  • Diao HY, Feng R, Dahmen KA, et al. Fundamental deformation behavior in high-entropy alloys: An overview. Curr Opin Solid State Mater Sci. 2017;21(5):252–266.
  • Cui P, Ma Y, Zhang L, et al. Effect of Ti on microstructures and mechanical properties of high entropy alloys based on CoFeMnNi system. Mater Sci Eng A. 2018;737:198–204.
  • Wang W-R, Wang W-L, Wang S-C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics. 2012;26:44–51.
  • Zhang Y, Zuo T, Cheng Y, et al. High-entropy alloys with high saturation magnetization, electrical resistivity and malleability. Sci Rep. 2013;3(1):1455.
  • Zuo T-T, Ren S-B, Liaw PK, et al. Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int J Miner, Metall Mater. 2013;20(6):549–555.
  • Tsai M-H. Physical properties of high entropy alloys. Entropy. 2013;15(12):5338–5345.
  • Daryoush S, Mirzadeh H, Ataie A. Nanostructured high-entropy alloys by mechanical alloying: A review of principles and magnetic properties. J Ultrafine Grained Nanostruct Mater. 2021;54(1):112–120.
  • Wang XF, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics. 2007;15(3):357–362.
  • Kaushik N, Meena A, Mali HS. High entropy alloy synthesis, characterisation, manufacturing & potential applications: a review. Mater Manuf Processes. 2022;37(10):1085–1109.
  • Singh N, Shadangi Y, Goud GS, et al. Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering. Trans Indian Inst Met. 2021;74(9):2203–2219.
  • Praveen S, Murty BS, Kottada RS. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A. 2012;534:83–89.
  • Joy J, Jadhav M, Sahane D, et al. Elemental effect on formation of solid solution phase in CoCrFeNiX and CoCuFeNiX (X=Ti, Zn, Si,Al) high entropy alloys. Mater Sci Technol. 2019;35(14):1700–1707.
  • Mohanty S, Samal S, Tazuddin A, et al. Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy. Mater Sci Technol. 2015;31(10):1214–1222.
  • Feng L, Yuan Y, Bian C, et al. Microstructure and properties of FexCrMnAlCu high-entropy alloy. Mater Sci Technol. 2023: 1–10. https://doi.org/10.1080/02670836.2022.2164130.
  • Karthik GM, Kim Y, Kim ES, et al. Gradient heterostructured laser-powder bed fusion processed CoCrFeMnNi high entropy alloy. Addit Manuf. 2022;59:103131.
  • Shan M, Wang S, Cai Y, et al. Laser welding of FeCoCrNiMnAlx (x=0, 0.75) high-entropy alloys fabricated by additive manufacturing. Mater Sci Technol. 2022;38(18):1617–1624.
  • Shi Y, Ni C, Liu J, et al. Microstructure and properties of laser clad high-entropy alloy coating on aluminium. Mater Sci Technol. 2018;34(10):1239–1245.
  • Yuan S, Li H, Han C, et al. FeCoNiCrAl0.6 high-entropy alloy coating on Q235 steel fabricated by laser cladding. Mater Sci Technol. 2022: 1–9.
  • Ren B, Liu ZX, Li DM, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloy Compd. 2010;493(1):148–153.
  • Tang C, Ye H, Zhan Y. Mechanism of FCC structure formation in NiCoFeCuMn equiatomic high-entropy alloys. Arab J Sci Eng. 2019;44(7):6637–6644.
  • Karimi MA, Shamanian M, Enayati MH, et al. Fabrication of a novel magnetic high entropy alloy with desirable mechanical properties by mechanical alloying and spark plasma sintering. J Manuf Process. 2022;84:859–870.
  • Cullity BD, Stock SR, Stock SR. Elements of X-ray diffraction. NewYork: Prentice Hall; 2001.
  • Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys. 2012;132(2):233–238.
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817–2829.
  • Praveen S, Basu J, Kashyap S, et al. Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloy Compd. 2016;662:361–367.
  • Praveen S, Anupam A, Tilak R, et al. Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater Chem Phys. 2018;210:57–61.
  • Zhang Y, Zhou YJ, Lin JP, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008; 10(6):534–538.
  • Steurer W. Single-phase high-entropy alloys – A critical update [Review]. Mater Charact. 2020;162(17).
  • Zhang Y, Lu ZP, Ma SG, et al. Guidelines in predicting phase formation of high-entropy alloys. MRS Commun. 2014; 4(2):57–62.
  • Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.
  • Wang Z, Huang Y, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys. Scr Mater. 2015: 28–31.
  • Jiang L, Lu YP, Jiang H, et al. Formation rules of single phase solid solution in high entropy alloys. Mater Sci Technol. 2016;32(6):588–592.
  • Karati A, Ghosh S, Nagini M, et al. Thermoelectric properties of nanocrystalline half-Heusler high-entropy Ti2NiCoSn1–xSb1+x (x=0.3, 0.5, 0.7, 1) alloys with VEC > 18. J Alloys Compd. 2022;927:166578.
  • Pandey VK, Shadangi Y, Shivam V, et al. Synthesis, characterization and thermal stability of nanocrystalline mgalmnfecu low-density high-entropy alloy. Trans Indian Inst Met. 2021;74(1):33–44.
  • Pradhan P, Shadangi Y, Shivam V, et al. J Alloys Compd. 2023;935:168002.
  • Wang Z, Guo S, Liu CT. Phase selection in high-entropy alloys: from nonequilibrium to equilibrium. JOM. 2014;66(10):1966–1972.
  • Chen RR, Qin G, Zheng HT, et al. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater. 2018;144:129–137.
  • Bishnoi A, Kumar S, Joshi N, et al. Chapter 9 – wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites. In: S Thomas, editor. Microscopy methods in nanomaterials characterization. Elsevier. 2017;313–337.
  • Kumar D, Maulik O, Kumar S, et al. Impact of tungsten on phase evolution in nanocrystalline AlCuCrFeMnWx (x=0, 0.05, 0.1 and 0.5 mol) high entropy alloys. Mater Res Express. 2017;4(11):10.
  • Kucukelyas B, Safaltin S, Sam ED, et al. Synthesis, structural and magnetic characterization of spherical high entropy alloy CoCuFeNi particles by hydrogen reduction assisted ultrasonic spray pyrolysis. Int J Mater Res. 2022;113(4):306–315.
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1):1–184.
  • Alijani F, Reihanian M, Gheisari K, et al. Effect of homogenization on microstructure and hardness of arc-melted FeCoNiMn high entropy alloy during high-pressure torsion (HPT). J Mater Eng Perform. 2022;31(6):5080–5089.
  • Gomez-Esparza CD, Baldenebro-Lopez F, Gonzalez-Rodelas L, et al. Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater Res Ibero-Am J Mater. 2016;19:39–46.
  • Suryanarayana C. Mechanical alloying: a critical review. Mater Res Lett. 2022;10(10):619–647.
  • Aly HA, Abdelghafar KA, Gaber GA, et al. Fabrication, characterization, and corrosion behavior of a new Cu40Mn25Al20Fe5Co5Ni5 high-entropy alloy in HNO3 solution. J Mater Eng Perform. 2021;30(2):1430–1443.
  • Xu J, Herr U, Klassen T, et al. Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying. J Appl Phys. 1996;79:3935–3945.
  • Cullity CDGBD. Introduction to magnetic materials. USA: John Wiley; 2008.
  • Chen Q, Zhou K, Jiang L, et al. Effects of Fe content on microstructures and properties of AlCoCrFexNi high-entropy alloys. Arab J Sci Eng. 2015; 40(12):3657–3663.
  • Jung C, Kang K, Marshal A, et al. Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys. Acta Mater. 2019;171:31–39.
  • Zhao R-F, Ren B, Zhang G-P, et al. CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties. J Magn Magn Mater. 2019;491:165574.
  • Alijani F, Reihanian M, Gheisari K. Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J Alloy Compd. 2019;773:623–630.
  • Zhao R-F, Ren B, Zhang G-P, et al. Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders. J Magn Magn Mater. 2018;468:14–24.
  • Zeng Q, Baker I, McCreary V, et al. Soft ferromagnetism in nanostructured mechanical alloying FeCo-based powders. J Magn Magn Mater. 2007;318(1):28–38.
  • Shen TD, Schwarz RB, Thompson JD. Soft magnetism in mechanically alloyed nanocrystalline materials. Phys Rev B. 2005;72:014431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.