172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of heat transfer characteristics of graphene nanoplatelets dispersed aluminium composite

, , &
Pages 1760-1770 | Received 09 Jul 2022, Accepted 11 Feb 2023, Published online: 28 Feb 2023

References

  • Harichandran R, Selvakumar N, Venkatachalam G. High-temperature wear behaviour of nano/micro B4C reinforced aluminium matrix composites fabricated by an ultrasonic cavitation-assisted solidification process. Trans Indian Inst Met. 2017;70(1):17–29. doi:10.1007/s12666-016-0856-1.
  • Radha P, Selvakumar N, Harichandran R. Computational intelligence for analyzing the mechanical properties of AA 2219–(B4C+ h-BN) hybrid nanocomposites processed by ultrasound-assisted casting. Arch Metall Mater. 2019;64(3):1163–1173. doi:10.24425/amm.2019.12950.
  • Paulraj P, Harichandran R. The tribological behaviour of hybrid aluminium alloy nanocomposites at high temperature: role of nanoparticles. J Mater Res Technol. 2020;9(5):11517–11530. doi:10.1016/j.jmrt.2020.08.044.
  • Han X, Huang Y, Zhou S, et al. Effects of graphene content on thermal and mechanical properties of chromium-coated graphite flakes/Si/Al composites. J Mater Sci: Mater Electron. 2018;29:4179–4189. doi:10.1007/s10854-017-8363-7.
  • Yuanyuan Jiang ZT, Run Xu GF, Xiong QGD-B, et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminium composites by flake powder metallurgy via shift-speed ball milling. Compos Part A. 2018;111:73–82. doi:10.1016/j.compositesa.2018.05.022.
  • Tiwari JK, Mandal A, Rudra A, et al. Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminium matrix composite by hot accumulative roll bonding. J Alloy Compd. 2019;801:49–59. doi:10.1016/j.jallcom.2019.06.127.
  • Dasari BL, Morshed M, Nouri JM, et al. Mechanical properties of graphene oxide reinforced aluminium matrix composites. Compos B: Eng. 2018;145:136–144. doi:10.1016/j.compositesb.2018.03.022.
  • Chen J, Gao X. Thermal and electrical anisotropy of polymer matrix composite materials reinforced with graphene nanoplatelets and aluminium-based particles. Diamond Relat Mater. 2019;100:107571. doi:10.1016/j.diamond.2019.107571.
  • Xie Y, Meng X, Huang Y, et al. Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminium composite for the balance between strength and ductility. Compos Part B: Eng. 2019;177:107413. doi:10.1016/j.compositesb.2019.107413.
  • Ferreira F, Ferreira I, Camacho E, et al. Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding. Compos Part B: Eng. 2019;164:265–271. doi:10.1016/j.compositesb.2018.11.075.
  • Wang C, Su Y, Ouyang Q, et al. Enhanced through-plane thermal conductivity and mechanical properties of vertically aligned graphene nanoplatelet@graphite flakes reinforced aluminum composites. Diamond Relat Mater. 2020;108:107929. doi:10.1016/j.diamond.2020.107929.
  • Song Y, Ma Y, Zhan K. Simulations of deformation and fracture of graphene reinforced aluminium matrix nano laminated composites. Mech Mater. 2020;142:103283. doi:10.1016/j.mechmat.2019.103283.
  • Mao JJ, Zhang W, Lu HM. Static and dynamic analyses of the graphene-reinforced aluminium-based composite plate in thermal environment. Aerosp Sci Technol. 2020;107:106354. doi:10.1016/j.ast.2020.106354.
  • Li Z, Chen Y, Zhang J, et al. Thermal-elastic buckling of the arch-shaped structures with FGP aluminium reinforced by composite graphene platelets. Thin-Walled Struct. 2020;157:107142. doi:10.1016/j.tws.2020.107142.
  • Li M, Wang Y, Gao H, et al. Thermally stable microstructure and mechanical properties of graphene reinforced aluminum matrix composites at elevated temperature. J Mater Res Technol. 2020;9(6):13230–13238. doi:10.1016/j.jmrt.2020.09.068.
  • Zheng Z, Yang X-X, Li J-C, et al. Preparation and properties of graphene nanoplatelets reinforced aluminium composites. Trans Nonferrous Met Soc China. 2021;31(4):878–886. doi:10.1016/S1003-6326(21)65546-2.
  • Wejrzanowski T, Grybczuk M, Chmielewski M, et al. Thermal conductivity of metal-graphene composites. Mater Des. 2016;99:163–173. doi:10.1016/j.matdes.2016.03.069.
  • Wejrzanowski T, Grybczuk M, Wasiluk M, et al. Heat transfer through metal-graphene interfaces. AIP Adv. 2015;5:077142. doi:10.1063/1.4927389.
  • Wei N, Zhou C, Li Z, et al. Thermal conductivity of aluminum/graphene metal-matrix composites: from the thermal boundary conductance to thermal regulation. Mater Today Commun. 2022;30:103147. doi:10.1016/j.mtcomm.2022.103147.
  • Vignesh Kumar R, Harichandran R, Vignesh U, et al. Influence of hot extrusion on strain hardening behaviour of graphene plateletsdispersed aluminium composites. J Alloy Compd. 2021;855:157448. doi:10.1016/j.jallcom.2020.157448.
  • Harichandran R, Vignesh Kumar R, Venkateswaran M. Experimental and numerical evaluation of thermal conductivity of graphene nanoplatelets reinforced aluminium composites produced by powder metallurgy and hot extrusion technique. J Alloys Compd. 2022;900:163401. doi:10.1016/j.jallcom.2021.163401.
  • Pradhan SK, Sahoo MR, Ratha S, et al. Graphene-incorporated aluminium with enhanced thermal and mechanical properties for solar heat collectors. AIP Adv. 2020;10; doi:10.1063/5.0008786(065016-42).
  • Le Zhang G, Wei Zhai QA, Jinkui Feng LZ, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminium particles. J Alloy Compd. 2018;748:854–860. doi:10.1016/j.jallcom.2018.03.237.
  • Sindhu R, Binod P, Pandey A. Chapter 17 - microbial poly-3-hydroxybutyrate and related copolymers. In: A Pandey, R Höfer, M Taherzadeh, K Madhavan Nampoothiri, C Larroche, editors. Industrial biorefineries & white biotechnology. Elsevier; 2015. p. 575–605. https://doi.org/10.1016/B978-0-444-63453-5.00019-7.
  • Dong K, Sheng N, Zou D, et al. A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix. Appl Energy. 2020;264:114685. doi:10.1016/j.apenergy.2020.114685.
  • Gong C, Lee G, Shan B, et al. First-principles study of metal–graphene interfaces. J Appl Phys. 2010;108(12):123711. doi:10.1063/1.3524232.
  • Schmidt AJ, Collins KC, Minnich AJ, et al. Thermal conductance and phonon transmissivity of metal–graphite interfaces. J Appl Phys. 2010;107(10):104907. doi:10.1063/1.3428464.
  • Dołęga A, Krupa A, Zieliński PM. Enhanced thermal stability of carbamazepine obtained by fast heating, hydration and re-crystallization from organic solvent solutions: a DSC and HPLC study. Thermochim Acta. 2020;690:178691. doi:10.1016/j.tca.2020.178691.
  • Saboori A, Pavese M, Badini C, et al. Microstructure and thermal conductivity of Al–graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall Sin. 2017;30:675–687. doi:10.1007/s40195-017-0579-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.