191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Co/P micro-alloying on stress relaxation behaviour of Cu-15Ni-8Sn alloy

, ORCID Icon, , , , & show all
Pages 1771-1781 | Received 08 Apr 2022, Accepted 13 Feb 2023, Published online: 28 Feb 2023

References

  • Nagarjuna S, Srinivas M. Elevated temperature tensile behaviour of a Cu–4.5Ti alloy. Mater Sci Eng A. 2005;406:186–194. doi:10.1016/j.msea.2005.06.064.
  • Zhang HT, Jiang YB, Xie JX, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy. J Alloy Compd. 2019;773:1121–1130. doi:10.1016/j.jallcom.2018.09.296.
  • Basak CB, Poswal AK. Compositional partitioning during the spinodal decomposition in Cu–Ni–Sn alloy. Philos Mag. 2018;98:1204–1216. doi:10.1080/14786435.2018.1436779.
  • Singh JB, Cai W, Bellon P. Dry sliding of Cu–15 wt%Ni–8 wt%Sn bronze: wear behaviour and microstructures. Wear. 2007;263:830–841. doi:10.1016/j.wear.2007.01.061.
  • Luo BM, Li DX, Chao Z, et al. A low Sn content Cu-Ni-Sn alloy with high strength and good ductility. Mater Sci Eng A. 2019;746:154–161. doi:10.1016/j.msea.2018.12.120.
  • Wang JB, Zhou XL, Li JH, et al. Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy. Addit Manuf. 2020;31:100921. doi:10.1016/j.addma.2019.100921.
  • Wang N, Shen YD, An Q, et al. Microstructure evolution and mechanical property of Cu-15Ni-8Sn-0.2Nb alloy during aging treatment. J Mater Sci Technol. 2021;86:227–236. doi:10.1016/j.jmst.2021.01.034.
  • Peng GW, Gan XP, Jiang YX, et al. Effect of dynamic strain aging on the deformation behavior and microstructure of Cu-15Ni-8Sn alloy. J Alloy Compd. 2017;718:182–187. doi:10.1016/j.jallcom.2017.05.127.
  • Zhao JC, Notis MR. Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy. Acta Mater. 1998;46:4203–4218. doi:10.1016/S1359-6454(98)00095-0.
  • Zhao JC, Notis MR. Microstructure and precipitation kinetics in a Cu-7.5Ni-5Sn alloy. Scripta Mater. 1998;39:1509–1516. doi:10.1016/S1359-6462(98)00341-8.
  • Miki M, Ogino Y. Effects of doped elements on the cellular precipitation in Cu–10Ni–8Sn alloy. Mater Trans. 1994;35:313–318. doi:10.2320/matertrans1989.35.313.
  • Zhao C, Zhang WW, Zhi W, et al. Improving the mechanical properties of Cu-15Ni-8Sn alloys by addition of titanium. Materials (Basel). 2017;10:1038. doi:10.3390/ma10091038.
  • Yu QX, Li XN, Wei KR, et al. Cu–Ni–Sn–Si alloys designed by cluster-plus-glue-atom model. Mater Design. 2019;167:107641. doi:10.1016/j.matdes.2019.107641.
  • Zhao C, Wang Z, Pan DQ, et al. Effect of Si and Ti on dynamic recrystallization of high-performance Cu-15Ni-8Sn alloy during hot deformation. T Nonferr Metal Soc. 2019;29:2556–2565. doi:10.1016/S1003-6326(19)65163-0.
  • Gao MQ, Chen ZN, Kang HJ, et al. Effects of Nb addition on the microstructures and mechanical properties of a precipitation hardening Cu-9Ni-6Sn alloy. Mater Sci Eng A. 2018;715:340–347. doi:10.1016/j.msea.2018.01.022.
  • Ouyang Y, Gan XP, Zhang SZ, et al. Age-hardening behavior and microstructure of Cu-15Ni-8Sn-0.3Nb alloy prepared by powder metallurgy and hot extrusion. T Nonferr Metal Soc. 2017;27:1947–1955. doi:10.1016/S1003-6326(17)60219-X.
  • Guo ZK, Jie JC, Liu SC, et al. Effect of V addition on microstructures and mechanical properties of Cu-15Ni-8Sn alloy. Mater Sci Eng A. 2019;748:85–94. doi:10.1016/j.msea.2019.01.084.
  • Guo CJ, Wan J, Chen JS, et al. Inhibition of discontinuous precipitation and enhanced properties of Cu–15Ni–8Sn alloy with Fe addition. Mater Sci Eng A. 2020;795:139917. doi:10.1016/j.msea.2020.139917.
  • Luo YY, Wang LX, Li K, et al. Effect of temperature cycling on stress relaxation behavior of electrical connector contacts. appl. Mech Mater. 2014;492:86–89. doi:10.4028/www.scientific.net/AMM.492.86.
  • Sun YQ, Peng LJ, Huang GJ, et al. Effect of Mg on the stress relaxation resistance of Cu–Cr alloys. Mater Sci Eng A. 2021;799:140144. doi:10.1016/j.msea.2020.140144.
  • Chandler HD. A comparison between steady state creep and stress relaxation in copper. Mater Sci Eng A. 2010;527:6219–6223. doi:10.1016/j.msea.2010.06.018.
  • Bieler TR, Mukherjee AK. Superplastic deformation mechanisms of mechanically alloyed aluminum. Materials Transactions Jim. 1991;32:1149–1158. doi:10.2320/matertrans1989.32.1149.
  • Watanabe H, Kita K, Kunimine T, et al. Evaluation of strength and stress relaxation resistance of Cu-Ni-Sn alloys produced by a simple thermomechanical treatment. Journal of the Society of Materials Science Japan. 2018;67:619–625. doi:10.2472/jsms.67.619.
  • Arshad Choudhry M, Ashraf M. Effect of heat treatment and stress relaxation in 7075 aluminum alloy. J Alloy Compd. 2007;437:113–116. doi:10.1016/j.jallcom.2006.07.079.
  • Nomura K, Miwa Y, Shimada Y, et al. Influence of 0.1% addition of Mg and/or Fe on strength and stress relaxation property of a Cu-0.52%Ni-0.19%P alloy. J Jpn I Met Mater. 2010;74:325–330. doi:10.2320/jinstmet.74.325.
  • Aruga Y, Saxey D, Marquis E, et al. Effect of P content on stress relaxation and clustering behavior in Cu-Ni-P alloys. Mater Trans. 2010;51:1802–1808. doi:10.2320/matertrans.M2010190.
  • Xiao XP, Liu RQ, Chen HM, et al. Effects of Co on the stress relaxation behavior of CuNiSi alloy. Mater Rev. 2015;29:148–151. doi:10.11896/j.issn.1005-023X.2015.10.034.
  • Guo CJ, Chen JS, Xiao XP, et al. The effect of Co addition on the modulated structure coarsening and discontinuous precipitation growth kinetics of Cu–15Ni–8Sn alloy. J Alloy Compd. 2020;835:155275. doi:10.1016/j.jallcom.2020.155275.
  • Guo CJ, Shi YF, Chen JS, et al. Effects of P addition on spinodal decomposition and discontinuous precipitation in Cu-15Ni-8Sn alloy. Mater Charact. 2021;171:110760. doi:10.1016/j.matchar.2020.110760.
  • Shi YF, Guo CJ, Chen JS, et al. Recrystallization behavior and mechanical properties of a Cu–15Ni–8Sn(P) alloy during prior deformation and aging treatment. Mater Sci Eng A. 2021;826:142025. doi:10.1016/j.msea.2021.142025.
  • Ouyang Y, Gan XP, Li Z, et al. Microstructure evolution of a Cu-15Ni-8Sn-0.8 Nb alloy during prior deformation and aging treatment[J]. Mater Sci Eng A. 2017;704:128–137. doi:10.1016/j.msea.2017.07.065.
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi:10.1016/0001-6160(53)90006-6.
  • Zhao YH, Liao XZ, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004;52:4589–4599. doi:10.1016/j.actamat.2004.06.017.
  • Cheng H, Wang HY, Xie YC, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties. Mater Sci Tech-Lond. 2017;33:2032–2039. doi:10.1080/02670836.2017.1342367.
  • Sun YQ, Peng LJ, Huang GJ, et al. Effect of Mg on the stress relaxation resistance of Cu-Cr alloys. Mater Sci Eng A. 2021;799:140144. doi:10.1016/j.msea.2020.140144.
  • Li Z. Effect of trace Sn on microstructure and properties of Cu-3Ni-0.75Si alloy. Master’s thesis, Jiangxi University of Science and Technology, Jiangxi, China, 2020. doi:10.27176/d.cnki.gnfyc.2020.000422
  • Wang YF, Gao HY, Han YF, et al. First-principles study of solute-vacancy binding in Cu. J Alloy Compd. 2014;608:334–337. doi:10.1016/j.jallcom.2014.04.053.
  • Sun YQ, Peng LJ, Huang GJ, et al. Effects of Mg addition on the microstructure and softening resistance of Cu-Cr alloys. Mater Sci Eng A. 2020;776:139009. doi:10.1016/j.msea.2020.139009.
  • Zhang JX, Ma M, Liu WC. Effect of initial grain size on the recrystallization and recrystallization texture of cold-rolled AA 5182 aluminum alloy. Mater Sci Eng A. 2017;690:233–243. https://.tsg.proxy.jxust.edu.cn. doi:10.1016/j.msea.2017.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.