255
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of double annealing treatments on Ti-10V-2Fe-3Al alloy by directed energy deposition

, , , , ORCID Icon, & show all
Pages 1792-1801 | Received 23 Nov 2022, Accepted 15 Feb 2023, Published online: 07 Mar 2023

References

  • Briggs RRBARD. The use of β titanium alloys in the aerospace industry. J Mater Eng Perform 2005;14(6):681–685.
  • Colombo-Pulgarin JC, Biffi CA, Vedani M, et al. Beta titanium alloys processed by laser powder Bed fusion: a review. J Mater Eng Perform. 2021;30(9):6365–6388.
  • G. T. Terlinde TWD, Williams JC. Microstructure, tensile deformation, and fracture in aged Ti-10V-2Fe-3Al. Metall Trans A. 1983;14A:2101–2115.
  • T. W. Duerig GTT, Williams JC. Phase transformations and tensile properties of Ti-10V-2Fe-3AI. Metall Trans A. 1980;11A:1987–1998.
  • Zygula K, Wojtaszek M, Lypchanskyi O, et al. The investigation on flow behavior of powder metallurgy Ti-10V-2Fe-3Al alloy using the prasad stability criterion. Metallurg Mater Trans A-Phys Metallur Mater Sci. 2019;50A(11):5314–5323.
  • Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844–879.
  • Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res. 2015: 1–4.
  • Abbott DH, Arcella FG. Laser forming titanium components. Adv Mater Process. 1998;153(5):29–30.
  • Arcella F G FFH. Producing titanium aerospace components from powder using laser forming. JOM. 2000;52(5):28–30.
  • Herderick E. Additive manufacturing of metals: a review. Mater Sci Technol. 2011;2011:1413–1425.
  • Wang HM. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronaut Astronaut Sin. 2014;35(10):2690–2698.
  • Wang Huaming ZS, Xiangming W. Progress and challenges of laser direct manufacturing of large titanium structural components (invited paper). Chin J Lasers. 2009;36:3204–3209.
  • Allison M. Beese BEC. Review of mechanical properties of Ti-6Al-4 V made by laser-based additive manufacturing using powder feedstock. J Miner, Met Mater Soc. 2015;68(3):724–734.
  • Liu CM, Wang HM, Tian XJ, et al. Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2013;586:323–329.
  • Yanyan Zhu XT, Li J, Wang H. Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy. J Alloys Compd 2014;616:468–474.
  • Zhu Y, Li J, Tian X, et al. Microstructure and mechanical properties of hybrid fabricated Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy by laser additive manufacturing. Mater Sci Eng A. 2014;607(0):427–434.
  • Li C, Chen J, Li W, et al. Study on the relationship between microstructure and mechanical property in a metastable beta titanium alloy. J Alloys Compd. 2015;627:222–230.
  • Zhang WL, Hao WT, Xiong W, et al. Effects of solution and aging treatment parameters on the microstructure evolution of Ti-10V-2Fe-3Al alloy. High Temp Mater Processes. 2020;39:501–509.
  • Terlinde G, Fischer G. Beta titanium alloys. J Aircr. 1996;26(3):335–346.
  • Tian XJ, Zhang SQ, Li A, et al. Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti-4Al-1.5Mn. Mater Sci Eng, A. 2010;527(7–8):1821–1827.
  • Kelly SM, Kampe SL. Microstructural evolution in laser-deposited multilayer Ti-6Al-4 V builds: Part II. Thermal modeling. Metallurg Mater Trans A. 2004;35(6):1869–1879.
  • Kelly SM, Kampe SL. Microstructural evolution in laser-deposited multilayer Ti-6Al-4 V builds: Part I. Microstructural characterization. Metallurg Mater Trans A. 2004;35(6): 1861–1867.
  • Zhai Y, Galarraga H, Lados DA. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4 V fabricated by additive manufacturing: LENS and EBM. Eng Fail Anal. 2016;69:3–14.
  • Han F, Tang B, Kou H, et al. Experiments and crystal plasticity finite element simulations of nanoindentation on Ti–6Al–4 V alloy. Mater Sci Eng A. 2015;625(0):28–35.
  • Liu CM, Wang HM, Tian XJ, et al. Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2014;590:30–36.
  • Liang Y-J, Liu D, Wang H-M. Microstructure and mechanical behavior of commercial purity Ti/Ti–6Al–2Zr–1Mo–1 V structurally graded material fabricated by laser additive manufacturing. Scr Mater. 2014;74:80–83.
  • Sugiura Y, Nakamura K, Hamai S. Mechanical properties of beta solution treated and aged Ti-10V-2Fe-3Al alloy. Tetsu Hagane-J Iron Steel Inst Japan. 2000;86(3):181–188.
  • Qi LC, Zhang KC, Qiao XL, et al. Microstructural evolution in the surface of Ti-10V-2Fe-3Al alloy by solution treatments. Prog. Nat Sci-Mater Int. 2020;30(1):106–109.
  • Bogucki R, Mosor K, Nykiel M. Effect of heat treatment conditions on the morphology of alpha phase and mechanical properties in Ti-10V-2Fe-3Al titanium alloy. Arch Metall Mater. 2014;59(4):1269–1273.
  • Al-Salihi H, Bettles C, Muddle B. The ageing behavior of titanium alloy Ti-10V-2Fe-3Al. 7th pacific Rim International Conference on Advanced Materials and Processing, Cairns, AUSTRALIA, Aug 02-06; Cairns, Australia. 2010; pp 843–846.
  • Zhu YY, Chen B, Tang HB, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy. Trans Nonferr Met Soc China. 2018;28(1):36–46.
  • Wang F, Lei LM, Fu X, et al. Effect of heat treatment on microstructures and tensile properties of TA19 alloy fabricated by laser metal deposition. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2020;782. 139284.
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the micro structural evolution during selective laser melting of Ti-6Al-4 V. Acta Mater. 2010;58(9):3303–3312.
  • Liu ZY, He B, Lyu T, et al. A review on additive manufacturing of titanium alloys for aerospace applications: directed energy deposition and beyond Ti-6Al-4 V. JOM. 2021;73(6):1804–1818.
  • Editorial, C. A. M. H. Titanium and copper alloys. Beijing: Standards Press of China; 2001.
  • Jiao ZG, Fu J, Li Z, et al. The spatial distribution of a phase in laser melting deposition additive manufactured Ti-10V-2Fe-3Al alloy. Mater Des. 2018;154:108–116.
  • Callister WD. Materials science and engineering: an introduction (2nd edition). Mater Des. 1991;12(1):59.
  • Li Z, Li J, Liu J, et al. Structure and formation mechanism of α/α interface in laser melting deposited α + β titanium alloy. J Alloys Compd 2016;657:278–285.
  • Zhao C, Shi XH, Cao C, et al. Effects of solution cooling modes and aging temperature on microstructure and tensile properties of TB8 titanium alloy. Hot Working Technol. 2022;51(14):126–130.
  • Terlinde GT, Duerig TW, Williams JC. The effect of heat teatment on microstructure and tenstile properties of Ti -10V-2Fe-3Al. Proc 4th Int Conf Titanium. 1980;2:1571–1581.
  • Wang XL, Li FG, Xu TY, et al. Mechanical behavior and microstructural evolution during cyclic tensile loading-unloading deformation in metastable Ti-10V-2Fe-3Al alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2022;835.142663.
  • Wang XL, Li FG, Xu TY, et al. Microstructure and microhardness evolution of Ti-10V-2Fe-3Al alloy under tensile/torsional deformation modes. J Alloys Compd. 2021;881.160484.
  • Duerig TW, Albrecht J, Richter D, et al. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al. Acta Metall. 1982;30(12):2161–2172.
  • Jackson M, Dashwood R, Christodoulou L, et al. The microstructural evolution of near beta alloy Ti-10V-2Fe-3Al during subtransus forging. Metall Mater Trans A. 2005;36(10):2871–2871.
  • Chamanfar A, Huang MF, Pasang T, et al. Microstructure and mechanical properties of laser welded Ti-10V-2Fe-3Al (Ti1023) titanium alloy. J Mater Res Technol. 2020;9(4):7721–7731.
  • Bao XY, Chen W, Zhang JY, et al. Achieving high strength-ductility synergy in a hierarchical structured metastable beta-titanium alloy using through-transus forging. J Mater Res Technol. 2021;11:1622–1636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.