144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved ductility of Mg–3Gd–0.6Zr alloy by cuboid-shaped phase: experiments and first-principle calculations

, , , , , , , & show all
Pages 1816-1826 | Received 21 Sep 2022, Accepted 20 Feb 2023, Published online: 06 Mar 2023

References

  • Zhu SM, Nie JF, Gibson MA, et al. On the unexpected formation of rare earth hydrides in magnesium–rare earth casting alloys. Scr Mater. 2014;77:21–24.
  • Park WJ, Park H, Kim DH, et al. Structure and decomposition behavior of rapidly solidified Mg–Nd–X (X = Al, Si) alloys. Mater Sci Eng A. 1994;179–180:637–640.
  • Yang YL, Peng LM, Fu PH, et al. Identification of NdH2 particles in solution–treated Mg–2.5%Nd (wt.%) alloy. J Alloys Compd. 2009;485:245–248.
  • Li DQ, Wang QD, Ding WJ. Characterization of phase in Mg–4Y–4Sm–0.5Zr alloy processed by heat treatment. Mater Sci Eng A. 2006;428:295–300.
  • Huang YD, Yang L, You SH, et al. Unexpected formation of hydrides in heavy rare earth containing magnesium alloys. J Magnes Alloys. 2016;4:173–180.
  • Vostry P, Smola B, Stulikova I, et al. Microstructure evolution in isochronally heat treated Mg–Gd alloys. Phys Stat Sol A. 1999;175:491–500.
  • He SM, Zeng XQ, Peng LM, et al. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J Alloys Compd. 2007;427:316–323.
  • Peng QM, Ma N, Li H. Gadolinium solubility and precipitate identification in Mg–Gd binary alloy. J Rare Earth. 2012;30:1064–1068.
  • Gao Y, Wang QD, Gu JH, et al. Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540°C. Mater Sci Eng A. 2007;459:117–123.
  • Zheng KY, Dong J, Zeng XQ, et al. Microstructural characterization of as–cast and homogenised Mg–Gd–Nd–Zr alloys. Mater Sci Technol. 2008;24:320–326.
  • Peng QM, Huang YD, Meng J, et al. Strain induced GdH2 precipitation Mg–Gd based alloys. Intermetallics. 2011;19:382–389.
  • Gan WM, Huang YD, Yang L, et al. Identification of unexpected hydrides in Mg–20 wt%Dy alloy by high–brilliance synchrotron radiation. J Appl Crystallogr. 2012;45:17–21.
  • Rokhlin LL. Magnesium alloys containing rare earth metals–structure and properties. London (NY): Taylor and Francis Press; 2003. p. 44.
  • Hu YB, Deng J, Zhao C, et al. Microstructure and mechanical properties of Mg–Gd–Zr alloys with low gadolinium contents. J Mater Sci. 2011;46:5836–5846.
  • Chen QW, Tang AT, Xu TY, et al. Formation mechanism of {102} growth twins in Mg–3Gd–0.6Zr alloy. Mater Sci Technol. 2019;35:978–985.
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426.
  • Zhuo LC, Liang SH, Zhang T. The 1.85 GPa AlSc bulk alloy with abundant nanoscale growth twins. Chin Phys Lett. 2015;32:076401.
  • Pero–Sanz Elorz JA, Quintana Hernández MJ, Verdeja González LF. Phase transformation kinetics. In: Christina Gifford, editor. Solidification and solid–state transformations of metals and alloys. Amsterdam: Elsevier Publishing; 2017. Chapter 2; p. 31–65.
  • Balogh Z, Schmitz G. Diffusion in metals and alloys. In: DE Laughlin, K Hono, editor. Physical metallurgy. 4th ed. Vol. I. Amsterdam: Elsevier Publishing; 2015. Chapter 5; p. 387–559.
  • Ngiam Y, Cao ZH, Huang MX. Understanding hydrogen embrittlement in press–hardened steel by coupling phase field and hydrogen diffusion modeling. Mater Sci Eng A. 2022;834:142523.
  • Wang Q, Lecomte JS, Schuman C, et al. Nanoindentation study of hydride diffusion layer in commercial pure titanium. Mater Sci Eng A. 2022;832:142428.
  • Tong X, You GQ, Luo JC, et al. Rapid cooling effect during solidification on macro– and micro–segregation of as–cast Mg–Gd alloy. Pro Nat Sci Mater Int. 2021;31:68–76.
  • Xu C, Zheng MY, Wu K, et al. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater Sci Eng A. 2013;559:364–370.
  • Zhang J, Yuan FQ, Du Y. Enhanced age–strengthening by two–step progressive solution treatment in an Mg–Zn–Al–Re alloy. Mater Des. 2013;52:332–336.
  • Kresse G, Hafner J. Ab initio molecular dynamics for open–shell transition metals. Phys Rev B. 1993;48:13115–13118.
  • Kresse G. Efficient iterative schemes for ab initio total–energy calculations using a plane–wave basis set. Phys Rev B. 1996;54:11169–11186.
  • Fu JW, Nie QQ, Qiu WX, et al. Morphology, orientation relationships and formation mechanism of TiN in Fe–17Cr steel during solidification. Mater Charact. 2017;133:176–184.
  • Libowitz GG, Maeland AJ. Hydrides. In: KA Gschneidner Jr, L Eyring, editor. Handbook on the physics and chemistry of rare earths. Vol. 3. Amsterdam: Elsevier Publishing; 1979. Chapter 26; p. 300.
  • Jian YX, Huang ZF, Xing JD, et al. Phase stability, mechanical properties and electronic structures of Ti–Al binary compounds by first principles calculations. Mater Chem Phys. 2019;221:311–321.
  • Saidi F, Sebaa N, Mahmoudi A, et al. Structural electronic and mechanical properties of YM2 (M = Mn, Fe, Co) laves phase compounds: first principle calculations analyzed with datamining approach. Solid State Commun. 2018;274:9–20.
  • Djemia P, Benhamida M, Bouamama K, et al. Structure and elastic properties of ternary metal nitrides TixTa1–xN alloy: first–principles calculations versus experiments. Surf Coat Technol. 2013;215:199–208.
  • Jin JM, Ming NB. Stacking fault growth of F.C.C. crystal: the Monte–Carlo simulation approach. Solid State Commun. 1989;70:759–762.
  • Humphreys J, Rohrer GS, Rollett A, Introduction. In: Kostas Marinakis, editor. Recrystallization and related annealing phenomena. 3rd ed. Amsterdam: Elsevier Publishing; 2017. Chapter 1; p. 1–11.
  • Pugh SF. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823–843.
  • Ilyas I, Zafar AA, Ullah HMN, et al. Pressure–induced elastic, mechanical and opto-electronic response of RbCdF3: a comprehensive computational approach. J Phys Chem Solid. 2022;165:110642.
  • Hill R. The elastic behavior of a crystalline aggregate. Proc Phys Soc A. 1952;65:349–354.
  • Vervynckt S, Verbeken K, Lopez B, et al. Modern HSLA steels and role of non-recrystallization temperature. Int Mater Rev. 2012;57:187–207.
  • Michler T, Naumann J. Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. Int J Hydrogen Energy. 2010;35:821–832.
  • Asahi H, Hirakami D, Yamasaki S. Hydrogen trapping behavior in vanadium added steel. ISIJ Int. 2003;43:527–533.
  • Nagao A, Martin ML, Dadfarnia M, et al. The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater. 2014;74:244–254.
  • Ohnuma M, Suzuki JI, Wei FG, et al. Direct observation of hydrogen trapped by NbC in steel using small–angle neutron scattering. Scr Mater. 2008;58:142–145.
  • Wei FG, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Mater Trans A. 2006;37:331–353.
  • Wei FG, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum. Mater Trans B. 2004;35:587–597.
  • Zhang Y, Wu YJ, Peng LM, et al. Microstructure evolution and mechanical properties of an ultra–high strength casting Mg–15.6Gd–1.8Ag–0.4Zr alloy. J. Alloys Compd. 2014;615:703–711.
  • Wei XC, Fu RY, Li L. Tensile deformation behaviour of cold-rolled TRIP-aided steels over large range of strain rates. Mater Sci Eng A. 2007;465:260–266.
  • Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe–C–X alloys: an experimental proof of the HELP mechanism. Int J Hydrogen Energy. 2018;43:3050–3061.
  • Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A. 1949;62:49–62.
  • Akhtar M, Khajuria A, Sahu JK, et al. Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci. 2018;8:1669–1685.
  • Khajuria A, Akhtar M, Bedi R. Boron addition to AlSl A213/P91 steel: preliminary investigation on microstructural evolution and microhardness at simulated heat-affected zone. Materialwiss Werkstofftech. 2022;53:1167–1183.
  • Akhtar M, Khajuria A. Probing true creep–hardening interaction in weld simulated heat affected zone of P91 steels. J Manuf Process. 2019;46:345–356.
  • Akhtar M, Khajuria A. The synergistic effects among crystal orientations, creep parameters, local strain, macro-microdeformation, and polycrystals’ hardness of boron alloyed P91 steels. Steel Res Int. 2022;93:2100819.
  • Vdovin VI. Mechanisms of dislocation generation in Si structures with strained layers: intrinsic point defects in dislocation nucleation. J Synch Investig. 2009;3:598–603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.