170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Zn addition on the microstructure and properties of Cu–Cr alloys

, , , , , & show all
Pages 1914-1925 | Received 02 Oct 2022, Accepted 21 Feb 2023, Published online: 21 Mar 2023

References

  • Kim BT, Kwon BI, Park SC. Reduction of electromagnetic force harmonics in asynchronous traction motor by adapting the rotor slot number. IEEE Trans Magn. 1999;35(5):3742–3744.
  • Kuznetsov V, Kardas-Cinal E, Golebiowski P, et al. Method of selecting energy-efficient parameters of an electric asynchronous traction motor for diesel shunting locomotives—case study on the example of a locomotive series ChME3 (3, CME3, CKD S200). Energies. 2022;15(1):317.
  • Steczek M, Chatterjee A, Chatterjee D. Optimisation of current harmonics for three-level VSI based induction motor drive suitable for traction application. IET Power Electron. 2018;11(9):1529–1536.
  • Zhdanovich CI, Kalinin NV. Efficiency analysis of energy accumulating mechanism for tractor with electromechanical transmission. Sci Technique. 2017;16(1):73–82.
  • Chu K, Wang F, Li Y-b, et al. Interface structure and strengthening behavior of graphene/CuCr composites. Carbon N Y. 2018;133:127–139.
  • Islamgaliev RK, Nesterov KM, Bourgon J, et al. Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J Appl Phys. 2014;115(19):194301.
  • Islamgaliev RK, Nesterov KM, Valiev RZ. Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation. Phys Met Metall. 2015;116(2):209–218.
  • Xiao P, You J, Zou J. In-situ synthesis and the vacuum electrical performances of Cr2Nb/CuCr composite. Rare Met Mater Eng. 2012;41(9):1666–1671.
  • Yang H, Bu Y, Wu J, et al. Nanocompound-induced anti-softening mechanisms: application to CuCr alloys. Mater Sci Eng A. 2022;841:143038.
  • Bukhanovsky VV, Rudnitsky NP, Mamuzich I. Effect of temperature on mechanical characteristics of copper–chromium composite. Mater Sci Technol. 2009;25(8):1057–1061.
  • Nathani H, Misra RDK. Characteristics of intermediate temperature dynamic embrittlement of age hardenable copper–chromium alloys. Mater Sci Technol. 2004;20(4):546–549.
  • Chen Y, Ren S, Zhao Y, et al. Microstructure and properties of CuCr alloy manufactured by selective laser melting. J Alloys Compd. 2019;786:189–197.
  • Feng Y, Zhang CY, Ding BJ. Preparation of nanocrystalline CuCr contact materials and their chopping currents. Rare Met Mater Eng. 2005;34(9):1439–1442.
  • Zhao HL, Meng DL, Hao W. Effect of heat treatment on hardness and impact toughness of CuCr containing RE alloy. J Rare Earths. 2005;23:445–448.
  • Shan L, Wang X, Chang Y, et al. Improving the mechanical performance of CuCr alloy by dissolving Cu in the Cr second phase. Mater Charact. 2021;176:111104.
  • Shan L, Wang X, Wang Y. Extension of solid solubility and structural evolution in nano-structured Cu–Cr solid solution induced by high-energy milling. Materials (Basel). 2020;13(23):5532.
  • Hu Z, Gan B, Tan J, et al. The enhancement of laser absorptivity and properties in laser powder bed fusion manufactured Cu–Cr–Zr alloy by employing Y2O3 coated powder as precursor. J Alloys Compd. 2022;927:167111.
  • Xie H, Guan W, Lv H, et al. CuCr/Cu contact material fabricated via high-speed laser cladding. Int J Adv Manuf Technol. 2022;124:394–410.
  • Lin GB, Wang ZD, Zhang MK, et al. Heat treatment method for making high strength and conductivity Cu–Cr–Zr alloy. Mater Sci Technol. 2011;27(5):966–969.
  • Sahani P, Mula S, Roy PK, et al. Structural investigation of vacuum sintered Cu–Cr and Cu–Cr–4% SIC nanocomposites prepared by mechanical alloying. Mater Sci Eng A. 2011;528(25-26):7781–7789.
  • Tanaka S, Mizusawa M, Miyabe Y, et al. Solidification structure of Cu–Cr and Cu–Cr–Zr alloys. J Jpn Inst Met. 2010;74(6):356–364.
  • Zhu Y, Liao J, Chen H, et al. Solidification microstructure of Cu–Cr and Cu–Cr–In alloys. Mater Res Express. 2020;7(4):046501.
  • Fan ZK, Yang HW, Liang SH, et al. Effects of extrusion on chromium precipitation in Cu–Cr alloy. Trans Nonferr Metal Soc China. 2003;13(2):267–270.
  • Su JH, Dong QM, Liu P, et al. Aging precipitation of lead frame Cu–Cr–Sn–Zn alloy. J Rare Earths. 2003;21:182–184.
  • Yuan J-h, Chen H-m, Xie W-b, et al. Work-softening mechanism of Cu–Cr–Ti–Si alloy. Cailiao Gongcheng—J Mater Eng. 2020;48(11):140–146.
  • Li YD, Yang BB, Zhang P, et al. Cu–Cr–Mg alloy with both high strength and high electrical conductivity manufactured by powder metallurgy process. Mater Today Commun. 2021;27(5):102266.
  • Luo Z, Luo F, Xie W, et al. A study on annealing-induced softening in cold drawn Cu–Cr–Sn alloy. Materialwiss Werkstofftech. 2018;49(11):1325–1334.
  • Wang YH, Song XP, Sun ZB, et al. Effect of titanium additives on the microstructure of melt-spun CuCr ribbons. Met Sci Heat Treat. 2007;49(3-4):176–179.
  • Deng JQ, Zhang XQ, Shang SZ, et al. Effect of Zr addition on the microstructure and properties of Cu–10Cr in situ composites. Mater Des. 2009;30(10):4444–4449.
  • Fu H, Xu S, Li W, et al. Effect of rolling and aging processes on microstructure and properties of Cu–Cr–Zr alloy. Mater Sci Eng A. 2017;700:107–115.
  • Liang N, Liu J, Lin S, et al. A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability. J Alloys Compd. 2017;735:1389–1394.
  • Li J, Ding H, Li B, et al. Effect of Cr and Sn additions on microstructure, mechanical–electrical properties and softening resistance of Cu–Cr–Sn alloy. Mater Sci Eng A. 2021;802:140628.
  • Peng HC, Xie WB, Chen HM, et al. Effect of micro-alloying element Ti on mechanical properties of Cu–Cr alloy. J Alloys Compd. 2021;852:157004.
  • Zhang SL, Yin ZM, Song LP, et al. Aging characteristics of the alloys Cu–Zn–Cr. Rare Met Mater Eng. 2003;32(2):126–129.
  • Zhao J, Liu L, Yang J, et al. Effects of high pressure on the microstructure and hardness of a Cu–Zn alloy. Rare Met. 2008;27(005):541–544.
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56(2):230–241.
  • Alves LM, da Silva RV, de Lacerda LA. Fractal modeling of the J–R curve and the influence of the rugged crack growth on the stable elastic–plastic fracture mechanics. Eng Fract Mech. 2010;77(13):2451–2466.
  • Holzwarth U, Stamm H. The precipitation behaviour of ITER-grade Cu–Cr–Zr alloy after simulating the thermal cycle of hot isostatic pressing. J Nucl Mater. 2000;279(1):31–45.
  • Wu YK, Li Y, Lu JY, et al. Correlations between microstructures and properties of Cu–Ni–Si–Cr alloy. Mater Sci Eng A. 2018;731:403–412.
  • Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51(8):801–806.
  • Zhao C, Wang Z, Li D, et al. Optimization of strength and ductility in an as-extruded Cu–15Ni–8Sn alloy by the additions of Si and Ti. J Alloys Compd. 2020;823:153759.
  • Santos-Güemes R, Segurado J, Lorca JL. A generalized line tension model for precipitate strengthening in metallic alloys. Eur J Mech A Solids. 2022;93:104540.
  • Santos-Güemes R, Bellón B, Esteban-Manzanares G, et al. Multiscale modelling of precipitation hardening in Al–Cu alloys: dislocation dynamics simulations and experimental validation. Acta Mater. 2020;188:475–485.
  • Wang SC, Zhu Z, Starink MJ. Estimation of dislocation densities in cold rolled Al–Mg–Cu–Mn alloys by combination of yield strength data, EBSD and strength models. J Microsc-Oxford. 2005;217:174–178.
  • Monnet G. Multiscale modeling of irradiation hardening: application to important nuclear materials. J Nucl Mater. 2018;508:609–627.
  • Guo X, Xiao Z, Qiu W, et al. Microstructure and properties of Cu–Cr–Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature. Mater Sci Eng A—Struct Mater Prop Microstruct Process. 2019;749:281–290.
  • Xu S, Fu H, Wang Y, et al. Effect of Ag addition on the microstructure and mechanical properties of Cu–Cr alloy. Mater Sci Eng A—Struct Mater Prop Microstruct Process. 2018;726:208–214.
  • Queyreau S, Monnet G, Devincreb B. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 2010;58(17):5586–5595.
  • Hoyt J J. On the coarsening of precipitates located on grain boundaries and dislocations. Acta Metall Mater. 1991;39(9):2091–2098.
  • Fernee H, Nairn J, Atrens A. Cu-rich corner of the Cu–Fe–Cr phase diagram. J Mater Sci Lett. 2001;20(24):2213–2215.
  • Gao N, Tiainen T, Huttunen-Saarivirta E, et al. Influence of thermomechanical processing on the microstructure and properties of a Cu–Cr–P alloy. J Mater Eng Perform. 2002;11(4):376–383.
  • Liu Y, Li Z, Jiang Y, et al. The microstructure evolution and properties of a Cu–Cr–Ag alloy during thermal–mechanical treatment. J Mater Res. 2017;32(7):1324–1332.
  • Lv X, Liu Z, Lei T, et al. Effect of heat treatment on Cr2Nb phase and properties of spark plasma sintered Cu–2Cr–1Nb alloy. Materials (Basel). 2020;13(12):2860.
  • Shen DP, Zhu YJ, Yang X, et al. Investigation on the microstructure and properties of Cu–Cr alloy prepared by in-situ synthesis method. Vacuum. 2018;149:207–213.
  • Sun X, Jie J, Wang P, et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu–Cr alloys. Mater Sci Eng A—Struct Mater Prop Microstruct Process. 2019;740:165–173.
  • Sun Y, Peng L, Huang G, et al. Effects of Mg addition on the microstructure and softening resistance of Cu–Cr alloys. Mater Sci Eng A. 2020;776:139009.
  • Wang J, Zhang H-t, Fu H-d, et al. Effect of Cr content on microstructure and properties of aged Cu–Cr–P alloys. Trans Nonferr Metals Soc China. 2021;31(1):232–242.
  • Wang W, Zhu J, Qin N, et al. Effects of minor rare earths on the microstructure and properties of Cu–Cr–Zr alloy. J Alloys Compd. 2020;847:155762.
  • Watanabe C, Monzen R, Tazaki K. Mechanical properties of Cu–Cr system alloys with and without Zr and Ag. J Mater Sci. 2008;43(3):813–819.
  • Yang J, Bu K, Song K, et al. Influence of low-temperature annealing temperature on the evolution of the microstructure and mechanical properties of Cu–Cr–Ti–Si alloy strips. Mater Sci Eng A. 2020;798:140120.
  • Yin X, Yang Z, Mi X, et al. The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy. J Alloys Compd. 2017;708:1096–1102.
  • Yuan Y, Li Z, Xiao Z, et al. Microstructure evolution and properties of Cu–Cr alloy during continuous extrusion process. J Alloys Compd. 2017;703:454–460.
  • Zhang K, Yang J, Li J, et al. Effect of deformation and aging treatment on the microstructure and properties of Cu–0.45Cr–0.14Ti (wt.%) alloy. J Alloys Compd. 2021;851:156776.
  • Zhao Z, Xiao Z, Li Z, et al. Effect of magnesium on microstructure and properties of Cu–Cr alloy. J Alloys Compd. 2018;752:191–197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.